October 5, 2015

A new way to look at the costs of digital media in education

Listen with webReader
Image: © Ehrenberg, D., AlleyWatch.com, 2013

Image: © Ehrenberg, D., AlleyWatch.com, 2013

I said it was going to be fun looking at the costs of digital media in education, but it wasn’t. When I came to write this section, I thought it would be a breeze. I wrote about this topic as recently as 2005. All I needed to do is tweak it a little to bring it up to date, I thought.

However, there has truly been a revolution in the media available for teaching and learning in the last ten years, and this revolution has completely up-ended many of the assumptions about costs previously made in this field. Most of the research on costs of educational media had been done by people (like myself) working mainly in distance education, because that was where technology was being mainly used for teaching. That has all changed now: media have gone mainstream.

What is really interesting though is how little research there has been done on the costs of new digital media in education (MOOCs are a slight exception). Nevertheless, when I dug into the topic, I came to what struck me at first as an astonishing conclusion: the costs of media don’t matter any more in media selection. Use what suits best your educational purpose, because it’s all low cost now.

Of course, that is a gross over-simplification. Like many other topics in this area, straight comparisons between different media don’t work. What you have to look at are the conditions or factors that influence costs, across all media. That’s what I’ve tried to explore in this section. Remember I’m targeting teachers and instructors, not economists or instructional designers. So here goes, and please, let me have feedback on this (see the end of this rather long post):

9.4.1 A revolution in media

Until as recently as ten years ago, cost was a major discriminator affecting the choice of technology (Hülsmann, 2000, 2003; Rumble, 2001; Bates, 2005). For instance, for educational purposes, audio (lectures, radio, audio-cassettes) was far cheaper than print, which in turn was far cheaper than most forms of computer-based learning, which in turn was far cheaper than video (television, cassettes or video-conferencing). All these media were usually seen as either added costs to regular teaching, or too expensive to use to replace face-to-face teaching, except for purely distance education on a fairly large scale.

However, there have been dramatic reductions in the cost of developing and distributing all kinds of media (except face-to-face teaching) in the last ten years, due to several factors:

  • rapid developments in consumer technologies such as smart phones that enable text, audio and video to be both created and transmitted by end users at low cost
  • compression of digital media, enabling even high bandwidth video or television to be carried over wireless, landlines and the Internet at an economic cost (at least in economically advanced countries)
  • improvements in media software, making it relatively easy for non-professional users to create and distribute all kinds of media
  • increasing amounts of media-based open educational resources, which are already developed learning materials that are free for teachers and students alike to use.

The good news then is that in general, and in principle, cost should no longer be an automatic discriminator in the choice of media. If you are happy to accept this statement at face value, than you can skip the rest of this chapter. Choose the mix of media that best meets your teaching needs, and don’t worry about which medium is likely to cost more. Indeed, a good case could be made that it would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration.

In practice however costs can vary enormously both between and within media, depending once again on context and design. Since the main cost from a teacher’s perspective is their time, it is important to know what are the ‘drivers’ of cost, that is, what factors are associated with increased costs, depending on the context and the medium being used. These factors are less influenced by new technological developments, and can therefore be seen as ‘foundational’ principles when considering the costs of educational media.

Unfortunately there are many different factors that can influence the actual cost of using media in education, which makes a detailed discussion of costs very complex. As a result, I will try to identify the main cost drivers, then provide a table that provides a simplified guide to how these factors influence the costs of different media, including face-to-face teaching. This guide again should be considered as a heuristic device. So see this chapter as Media Costs 101.

9.4.1 Cost categories

The main cost categories to be considered in using educational media and technologies, and especially blended or online learning, are as follows: Development

These are the costs needed to pull together or create learning materials using particular media or technologies. There are several sub-categories of development costs:

  • production costs: making a video or building a course section in a learning management system. Included in these costs will be the time of specialist staff, such as web designers or audio-visual specialists, as well as any costs in web design or video production
  • your time as an instructor: the work you have to do as part of developing or producing materials.  This will include planning/course design as well as development. Your time is money, and probably the largest single cost in using educational technologies, but more importantly, if you are developing learning materials you are not doing other things, such as research or interacting with students, so there is a real cost, even if it is not expressed in dollar terms.
  • copyright clearance if you are using third party materials such as photos or video clips. Again, this is more likely to be thought of as time rather than money
  • probably the cost of an instructional designer in terms of their time

Development costs are usually fixed or ‘once only’ and are independent of the number of students. Once media are developed, they are usually scalable, in that once produced, they can be used by any number of learners without increased development costs. Using open educational resources can help reduce greatly media development costs. Delivery

This includes the cost of the educational activities needed during offering the course and would include instructional time spent interacting with students, instructional time spent on marking assignments, and would include the time of other staff supporting delivery, such as teaching assistants, adjuncts for additional sections and instructional designers and technical support staff.

Because of the cost of human factors such as instructional time and technical support needed in media-based teaching, delivery costs tend to increase as student numbers increase, and also have to be repeated each time the course is on offer, i.e. they are recurrent. However, increasingly with Internet-based delivery, there is usually a zero direct technology cost in delivery. Maintenance costs

Once materials for a course are created, they need to be maintained. Urls go dead, set readings may go out of print or expire, and more importantly new developments in the subject area may need to be accommodated. Thus once a course is offered, there are ongoing maintenance costs.

Instructional designers and/or media professionals can manage some of the maintenance, but nevertheless teachers or instructors will need to be involved with decisions about content replacement or updating. Maintenance is not usually a major time consumer for a single course, but if an instructor is involved in the design and production of several online courses, maintenance time can build to a significant amount.

Maintenance costs are usually independent of the number of students, but are dependent on the number of courses an instructor is responsible for, and are recurrent each year. Overheads

These include infrastructure or overhead costs, such as the cost of licensing a learning management system, lecture capture technology and servers for video steaming. These are real costs but not ones that can be allocated to a single course but will be shared across a number of courses. Overheads are usually considered to be institutional costs and, although important, probably will not influence a teacher’s decision about which media to use, provided these services are already in place and the institution does not directly charge for such services.

9.4.2 Cost drivers

The primary factors that drive cost are

  • the development/production of materials,
  • the delivery of materials,
  • number of students/scalability
  • the experience of an instructor working with the medium
  • whether the instructor develops materials alone (self-development) or works with professionals

Production of technology-based materials such as a video program, or a Web site, is a fixed cost, in that it is not influenced by how many students take the course. However, production costs can vary depending on the design of the course. Engle (2014) showed that depending on the method of video production, the development costs for a MOOC could vary by a factor of six (the most expensive production method – full studio production – being six times that of an instructor self-recording on a laptop).

Nevertheless, once produced, the cost is independent of the number of students. Thus the more expensive the course to develop, the greater the need to increase student numbers to reduce the average cost per student. (Or put another way, the greater the number of students, the more reason to ensure that high quality production is used, whatever the medium). In the case of MOOCs (which tend to be almost twice as expensive to develop as an online course for credit using a learning management system – University of Ottawa, 2013) the number of learners is so great that the average cost per student is very small. Thus there are opportunities for economies of scale from the development of digital material, provided that student course enrolments can be increased (which may not always be the case). This can be described as the potential for the scalability of a medium.

Similarly, there are costs in teaching the course once the course is developed. These tend to be variable costs, in that they increase as class size increases. If student-teacher interaction, through online discussion forums and assignment marking, is to be kept to a manageable level, then the teacher-student ratio needs to be kept relatively low (for instance, between 1:25 to 1:40, depending on the subject area and the level of the course). The more students, the more time a teacher will need to spend on delivery, or additional contract instructors will need to be hired. Either way, increased student numbers generally will lead to increased costs. xMOOCs are an exception. Their main value proposition is that they do not provide direct learner support, so have zero delivery costs. However, this is probably the reason why such a small proportion of participants successfully complete MOOCs.

There may be benefits then for a teacher or for an institution in spending more money up front for interactive learning materials if this leads to less demand for teacher-student interaction. For instance, a mathematics course might be able to use automated testing and feedback and simulations and diagrams, and pre-designed answers to frequently asked questions, with less or even no time spent on individual assignment marking or communication with the teacher. In this case it may be possible to manage teacher-student ratios as high as 1:200 or more, without significant loss of quality.

Also, experience in using or working with a particular medium or delivery method is important. The first time an instructor uses a particular medium such as podcasting, it takes much longer than subsequent productions or offerings. Some media or technologies though need much more effort to learn to use than others. Thus a related cost driver is whether the instructor works alone (self-development) or works with media professionals. Self-developing materials will usually take longer for an instructor than working with professionals.

There are advantages in teachers and instructors working with media professionals when developing digital media. Media professionals will ensure the development of a quality product, and above all can save teachers or instructors considerable time, for instance through the choice of appropriate software, editing, and storage and streaming of digital materials. Instructional designers can help in suggesting appropriate applications of different media for different learning outcomes. Thus as with all educational design, a team approach is likely to be more effective, and working with other professionals will help control the time teachers and instructors spend on media development.

Lastly, design decisions are critical. Costs are driven by design decisions within a medium. For instance cost drivers are different between lectures and seminars (or lab classes) in face-to-face teaching. Similarly, video can be used just to record talking heads, as in lecture capture, or can be used to exploit the affordances of the medium (see Section 9. 5), such as demonstrating processes or location shooting. Computing has a wide and increasing range of possible designs, including online collaborative learning (OCL), computer-based learning, animations, simulations or virtual worlds. Social media are another group of media that also need to be considered.

Figure 9.4 attempts to capture the complexity of cost factors, focusing mainly on the perspective of a teacher or instructor making decisions. Again, this should be seen as a heuristic device, a way of thinking about the issue. Other factors could be added (such as social media, or maintenance of materials). I have given my own personal ratings for each cell, based on my experience. I have taken conventional teaching as a medium or ‘average’ cost, then ranked cells as to whether there is a higher or lower cost factor for the particular medium. Other readers may well rate the cells differently.

Figure 9. Drivers of cost for educational media

Figure 9.4 Drivers of cost for educational media

Thus although in particular the time it takes to develop and deliver learning using different technologies is likely to influence an instructor’s decision about what technology to use, it is not a simple equation. For instance, developing a good quality online course using a mix of video and text materials may take much more of the instructor’s time to prepare than if the course was offered through classroom teaching. However, the online course may take less time in delivery over several years, because students may be spending more time on task online, and less time in direct interaction with the instructor. Once again, we see that design is a critical factor in how costs are assessed.

In short, from an instructor perspective, time is the critical cost factor. Technologies that take a lot of time to use are less likely to be used than those that are easy to use and thus save time. But once again design decisions can greatly affect how much time teachers or instructors need to spend on any medium, and the ability of teachers and students to create their own educational media is becoming an increasingly important factor.

9.4.3 Issues for consideration

In recent years, university faculty have generally gravitated more to lecture capture for online course delivery, particularly in institutions where online or distance learning is relatively new, because it is ‘simpler’ to do than redesign and create mainly text based materials in learning management systems. Lecture capture also more closely resembles the traditional classroom method. Pedagogically though (depending on the subject area) it may be less effective than an online course using collaborative learning and online discussion forums, as we shall see in Section 9.5. Also, from an institutional perspective lecture capture has a much higher technology cost than a learning management system.

Also, students themselves can now use their own devices to create multimedia materials for project work or for assessment purposes in the form of e-portfolios. Media allow instructors, if they wish, to move a lot of the hard work in teaching and learning from themselves to the students. Media allow students to spend more time on task, and low cost, consumer media such as mobile phones or tablets enable students themselves to create media artefacts, enabling them to demonstrate their learning in concrete ways. This does not mean that instructor ‘presence’ is no longer needed when students are studying online, but it does enable a shift in where and how a teacher or instructor can spend their time in supporting learning.

9.4.4 Questions for consideration

You may be better answering these questions when you have read Section 9.5 on the affordances of media. However, I think you will find it interesting to answer these questions before reading Section 9.5, then compare your answers after you have read Section 9.5

  1. Are concerns about the possible cost/demands on your time influencing your decisions on what media to use? If so in what ways? Has this section on costs changed your mind?
  2. How much time do you spend preparing lectures? Could that time be better spent preparing learning materials, then using the time saved from delivering lectures on interaction with students (online and/or face-to-face)?
  3. What kind of help can you get in your institution from instructional designers and media professionals for media design and development? What media decisions will the answer to this question suggest to you? For instance, if you are in a k-12 school with little or no chance for professional support, what kind of media and design decisions are you likely to make?
  4. To what extent have you explored open educational resources in your subject area? Type in the name of your course or topic + OER into Google  and see what comes up. How would the availability of such free media influence the design of your teaching?
  5. If you were filling in the cells for Figure 9.4, what differences would there be with my entries? Why?
  6. In Figure 9.4, add the following media: e-portfolios (in computing) and add another section under computing: social media. Add blogs, wikis and cMOOCs. How would you fill in the cells for each of these for development, delivery, etc.? Are there other media you would also add?
  7. Do you agree with the statement: It would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration? What are the implications for your teaching if this is really true? What considerations would still justify face-to-face teaching?


Please! In particular:

  1. Are there more recent publications on the costs of different media (as distinct from online or blended learning in general) that I have missed and should include?
  2. How do you react to Figure 9.4? Is it a helpful way to think of the different conditions or factors that influence costs? If not, what approach would you take to this topic?
  3. How useful are the questions for consideration above (9.4.4) from an instructor’s perspective? Can you suggest better ones?
  4. Do you agree with the following statements:
    1. cost should no longer be an automatic discriminator in the choice of mediaChoose the mix of media that best meets your teaching needs, and don’t worry about which medium is likely to cost more.
    2. It would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration. 
    3. university faculty have generally gravitated more to lecture capture for online course delivery, particularly in institutions where online or distance learning is relatively new, because it is ‘simpler’ to do than redesign and create mainly text based materials in learning management systems.
    4. Media allow students to spend more time on task, and low cost, consumer media such as mobile phones or tablets enable students themselves to create media artefacts, enabling them to demonstrate their learning in concrete ways. This does not mean that instructor ‘presence’ is no longer needed when students are studying online, but it does enable a shift in where and how a teacher or instructor can spend their time in supporting learning.
  5. Does this approach to the costs of digital media work for you? If not, what would you suggest?

Up next

The pedagogical affordances of different media:

  • text
  • audio
  • video
  • computing
  • social media
  • face-to-face teaching


Bates, A. (2005) Technology, e-Learning and Distance Education London/New York: Routledge

Engle, W. (2104)UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

Hülsmann, T. (2000) The Costs of Open Learning: A Handbook Oldenburg: Bibliotheks- und Informationssytem der Universität Oldenburg

Hülsmann, T. (2003) Costs without camouflage: a cost analysis of Oldenburg University’s  two graduate certificate programs offered  as part of the online Master of Distance Education (MDE): a case study, in Bernath, U. and Rubin, E., (eds.) Reflections on Teaching in an Online Program: A Case Study Oldenburg, Germany: Bibliothecks-und Informationssystem der Carl von Ossietsky Universität Oldenburg

Rumble, G. (2001) The Cost and Costing of Networked Learning Journal of Asynchronous Learning Networks, Volume 5, Issue 2

University of Ottawa (2013)Report of the e-Learning Working Group Ottawa ON: The University of Ottawa

Ease of use as a criterion for technology selection in online learning

Listen with webReader
Image: © Daily Express, 2012

Reliability is important! Image: © Daily Express, 2012

I felt myself cringing as I wrote this section for my book on ‘Teaching in a Digital Age’. Talk about do what I say and not what I do, especially the part about spending a small amount of time in properly learning about a technology before using it. I was almost half way through writing this book, before I worked out that ‘Parts’ were in fact introductions to ‘Chapters’ and ‘Chapters’ really were sections of chapters, in Pressbook terminology. I also didn’t work out until this week how to actually publish it once it was available in html format.  Oh, that’s what this button is for!

However, ease of use is a critical criterion for media selection. Who wants to spend hours fiddling with the technology when teaching or learning, unless you’re a geek or a computer scientist? ‘Transparency’ is the key word. So here’s my contribution, under the letter ‘E’ in the SECTIONS model.

9.3 The SECTIONS Model: Ease of Use

In most cases, the use of technology in teaching is a means, not an end. Therefore it is important that students and teachers do not have to spend a great deal of time on learning how to use educational technologies, or on making the technologies work. The exceptions of course are where technology is the area of study, such as computer science or engineering, or where learning the use of software tools is critical for some aspects of the curriculum, for instance computer-aided design in architecture, spreadsheets in business studies, and geographical information systems in geology. In most cases, though, the aim of the study is not to learn how to use a particular piece of educational technology, but the study of history, mathematics, or biology.

Computer and information literacy

If a great deal of time has to be spent by the students and teachers in learning how to use for instance software for the development or delivery of course material, this distracts from the learning and teaching. Of course, there is a basic set of literacy skills that will be required, such as the ability to read and write, to use a keyboard, to use word processing software, to navigate the Internet and use Internet software, and increasingly to use mobile devices. These generic skills though could be considered pre-requisites. If students have not adequately developed these skills in school, then an institution might provide preparatory courses for students on these topics.

It will make life a lot easier for both teachers and students if an institution has strategies for supporting students’ use of digital media. For instance, at the University of British Columbia, the Digital Tattoo project prepares students for learning online in a number of ways:

  • introducing students to a range of technologies that could be used for their learning, such as learning management systems, open educational resources, MOOCs and e-portfolios
  • explaining what’s involved in studying online or at a distance
  • setting out the opportunities and risks of social media
  • advice on how to protect their privacy
  • advice on how to make the most of connecting, networking and online searching
  • how to prevent cyberbullying
  • maintaining a professional online presence.

If your institution does not have something similar, then you could direct your students to the Digital Tattoo site, which is fully open and available to anyone to use.

It is not only students though who may need prior preparation. Technology can be too seductive. You can start using it without fully understanding its structure or how it works. Even a short period of training – an hour or less – on how to use common technologies such as a learning management system or lecture capture could save you a lot of time and more importantly, enable you to see the potential value of all features and not just those that you stumble across.


A useful standard or criterion for the selection of course media or software is that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on. This 20 minutes may be needed to work out some of the key functions of the software that may be unfamiliar, or to work out how the course Web site is organized and navigated. This is more of an orientation period though than learning new skills of computing.

If we do need to introduce new software that may take a little time to learn, for instance, a synchronous ‘chat’ facility, or video streaming, it should be introduced at the point where it is needed. It is important though to provide time within the course for the students to learn how to do this.

Interface design

The critical factor in making technology transparent is the design of the interface between the user and the machine. Thus an educational program or indeed any Web site should be well structured, intuitive for the user to use, and easy to navigate.

Interface design is a highly skilled profession, and is based on a combination of scientific research into how humans learn, an understanding of how operating software works, and good training in graphic design. This is one reason why it is often wise to use software or tools that have been well established in education, because these have been tested and been found to work well.

The traditional generic interface of computers – a keyboard, mouse, and graphic user interface of windows and pull-down menus and pop-up instructions – is still extremely crude, and not isomorphic with most people’s preferences for processing information. It places very heavy emphasis on literacy skills and a preference for visual learning. This can cause major difficulties for students with certain disabilities, such as dyslexia or poor eyesight. However, in recent years, interfaces have started to become more user friendly, with touch screen and voice activated interfaces.

Nevertheless a great deal of effort often has to go into the adaptation of existing computer or mobile interfaces to make them easy to use in an educational context. The Web is just as much a prisoner of the general computer interface as any other software environment, and the educational potential of any Web site is also restricted by its algorithmic or tree-like structure. For instance, it does not always suit the inherent structure of some subject areas, or the preferred way of learning of some students.

There are several consequences of these interface limitations for teachers in higher education:

  • it is really important to choose teaching software or other technologies that are intuitively easy to use, both by the students in particular, but also for the teacher in creating materials and interacting with students;
  • when creating materials for teaching, the teacher needs to be aware of the issues concerning navigation of the materials and screen lay-out and graphics. While it is possible to add stimulating features such as audio and animated graphics, this comes at the cost of bandwidth. Such features should be added only where they serve a useful educational function, as slow delivery of materials is extremely frustrating for learners, who will normally have slower Internet access that the teacher creating the materials. Furthermore, web-based layout on desktop or laptop computers does not automatically transfer to the same dimensions or configurations on mobile devices, and mobile devices have a wide range of standards, depending on the device. Given that the design of Web-based materials requires a high level of specialized interface design skill, it is preferable to seek specialist help, especially if you want to use software or media that are not standard, institutionally supported tools. This is particularly important when thinking of using new mobile apps, for instance;
  • third, we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices. Changes in basic computer interface design could have as profound an impact on the use of technology in teaching as the Internet has.


The reliability and robustness of the technology is also critical. Most of us will have had the frustration of losing work when our word programming software crashes or working ‘in the cloud’ and being logged off in the middle of a piece of writing. The last thing you want as a teacher or instructor is lots of calls from students saying they cannot get online access, or that their computer keeps crashing (if the software locks up one machine, it will probably lock up all the others!). Technical support can be a huge cost, not just in paying technical staff to deal with service calls, but also in lost time of students and teachers.

This means that you do not want to be at the ‘bleeding’ edge in your choice of technology, if it is to be used in any significant and regular form of teaching. It is best to wait for at least a year for new apps or software to be fully tested before adopting them. It is wise then not to rush in and buy the latest software up-date or new product – wait for the bugs to be ironed out.  Also if you plan to use a new app or technology that is not generally supported by the institution, check first with IT services to ensure there are not security, privacy or institutional bandwidth issues.

A feature of online learning is that peak use tends to fall outside normal office hours. Thus it is really important that your course materials sit on a reliable server with high-speed access and 24 hour, seven days a week reliability, with automatic back-up on a separate, independent server located in a different building. Ideally, the servers should be in a secure area (with for instance emergency electricity supply) with 24 hour technical support, which probably means locating your servers with central IT services. Increasingly online learning materials and courses are being located ‘in the cloud’, which means it is all the more important to ensure that materials are safely and independently backed up.

However, the good news is that most commercial educational software products such as learning management systems and lecture capture, as well as servers, are very reliable. Open source software too is usually reliable but probably slightly more at risk of technical failure or security breaches. If you have good IT support, you should receive very few calls from students on technical matters. The main technical issue that faculty face these days appears to be software up-grades to learning management systems. This often means moving course materials from one version of the software to the new version. This can be costly and time-consuming, particularly if the new version is substantially different from the previous version. Overall, though, reliability should not be an issue.

In summary, ease of use requires professionally designed commercial or open source course software, specialized help in graphics, navigation and screen design for your course materials, and strong technical support for server and software management and maintenance. Certainly in North America, most institutions now provide IT and other services focused specifically on supporting technology-based teaching. However, without such professional support, a great deal of your time as a teacher will be spent on technical issues, and to be blunt, if you do not have easy and convenient access to such support, you would be wise not to get heavily committed to technology-based teaching until that support is available.

Questions for consideration

Some of the questions then that you need to consider are:

  1. How intuitively easy to use is the technology you are considering, both by students and by yourself?
  1. How reliable is the technology?
  1. How easy is it to maintain and up-grade the technology?
  1. The company that is providing the critical hardware or software you are using: is it a stable company that is not likely to go out of business in the next year or two, or is it a new start-up? What strategies are in place to secure any digital teaching materials you create should the organisation providing the software or service cease to exist?
  1. Do you have adequate technical and professional support, both in terms of the technology and with respect to the design of materials?


  1. I guess my main concern with this section is whether it is still needed these days. Most institutions, at least in Canadian post-secondary education, have moved in recent years to make sure there is professional IT support for technology for teaching as well as for communications and administration. Much of the newer technologies, such as apps, use relatively simple programming and hence tend to be much more reliable. Some advances have been made in interface design. Faculty themselves have become more tech savvy and learners of course have grown up using digital technologies. Does this all make ‘Ease of Use’ as a criterion redundant now? If not, is this section far too cautious? Should I be encouraging faculty to take more risks?
  2. Is the criterion that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on a valid and useful criterion when selecting a platform for teaching and learning?
  3. I actually wrote ‘we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices‘ in 2003 (Bates and Poole, 2003). Here we are 11 years later. Will things still be the same in another 11 years time – or will real progress be made in the next few years in interface design? Is Siri the future?
  4. you do not want to be at the ‘bleeding’ edge in your choice of technology’. Do you agree?
  5. Any other comments? In particular do you have examples of good practice that could strengthen this section that I could use?

Up next

Cost as a criterion for media selection. This one will be fun.

A ‘starter’ bibliography on MOOCs

Listen with webReader
Image: © educatorstechnology.com, 2014

Image: © educatorstechnology.com, 2014

For the increasing number of students doing Masters’ dissertations or Ph.D’s on MOOCs I have collected together for convenience all the references made in my chapter on MOOCs for my open textbook, ‘Teaching in a Digital World.’ However, there are many other publications – this cannot be considered a comprehensive list. Also note the date of this blog post: anything published after this will not be here, unless you let me know about it.

In return, I would really appreciate other suggestions for references that you have found to be valuable or influential. I’m now less interested in ‘opinion pieces’ but I am looking for more papers that reflect actual experience or research on MOOCs.

Balfour, S. P. (2013). Assessing writing in MOOCs: Automated essay scoring and calibrated peer review. Research & Practice in Assessment, Vol. 8.

Bates, A. (1985) Broadcasting in Education: An Evaluation London: Constables

Bates, A. and Sangrà, A. (2011) Managing Technology in Higher Education San Francisco: Jossey-Bass/John Wiley and Co

Bates, T. (2012) What’s right and what’s wrong with Coursera-style MOOCs Online Learning and Distance Education Resources, August 5

Bayne, S. (2014) Teaching, Research and the More-than-Human in Digital Education Oxford UK: EDEN Research Workshop (keynote: no printed record available)

Blackall, L. (2014) Open online courses and massively untold stories, GoogleDocs

Book, P. (2103) ACE as Academic Credit Reviewer–Adjustment, Accommodation, and Acceptance WCET Learn, July 25

Chauhan, A. (2014) Massive Open Online Courses (MOOCS): Emerging Trends in Assessment and Accreditation Digital Education Review, No. 25

Christensen, C. (2010) Disrupting Class, Expanded Edition: How Disruptive Innovation Will Change the Way the World Learns New York: McGraw-Hill

Christensen, C. and Eyring, H. (2011), The Innovative University: Changing the DNA of Higher Education, New York, New York, USA: John Wiley & Sons,

Christensen, C. and Weise, M. (2014) MOOCs disruption is only beginning, The Boston Globe, May 9

Collins, E. (2013) SJSU Plus Augmented Online Learning Environment Pilot Project Report San Jose CA: The Research and Planning Group for California Colleges

Colvin, K. et al. (2014) Learning an Introductory Physics MOOC: All Cohorts Learn Equally, Including On-Campus Class, IRRODL, Vol. 15, No. 4

Daniel, J. (2012) Making sense of MOOCs: Musings in a maze of myth, paradox and possibility Seoul: Korean National Open University

Dillenbourg, P. (ed.) (1999) Collaborative-learning: Cognitive and Computational Approaches. Oxford: Elsevier

Dillenbourg, P. (2014) MOOCs: Two Years Later, Oxford UK: EDEN Research Workshop (keynote: no printed record available)

Downes, S. (2012) Massively Open Online Courses are here to stay, Stephen’s Web, July 20

Downes, S. (2014) The MOOC of One, Valencia, Spain, March 10

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

Falchikov, N. and Goldfinch, J. (2000) Student Peer Assessment in Higher Education: A Meta-Analysis Comparing Peer and Teacher Marks Review of Educational Research, Vol. 70, No. 3

Firmin, R. et al. (2014) Case study: using MOOCs for conventional college coursework Distance Education, Vol. 35, No. 2

Friedland, T. (2013) Revolution hits the universities, New York Times, January 26

Harasim, L. (2012) Learning Theory and Online Technologies New York/London: Routledge

Haynie, D. (2014). State Department hosts ‘MOOC Camp’ for online learners. US News,January 20

Hernandez, R. et al. (2014) Promoting engagement in MOOCs through social collaboration Oxford UK: Proceedings of the 8th EDEN Research Workshop

Hill, P. (2012) Four Barriers that MOOCs Must Overcome to Build a Sustainable Model e-Literate, July 24

Ho, A. et al. (2014) HarvardX and MITx: The First Year of Open Online Courses Fall 2012-Summer 2013 (HarvardX and MITx Working Paper No. 1), January 21

Hollands, F. and Tirthali, D. (2014) MOOCs: Expectations and Reality New York: Columbia University Teachers’ College, Center for Benefit-Cost Studies of Education

Hülsmann, T. (2003) Costs without camouflage: a cost analysis of Oldenburg University’s  two graduate certificate programs offered  as part of the online Master of Distance Education (MDE): a case study, in Bernath, U. and Rubin, E., (eds.) Reflections on Teaching in an Online Program: A Case Study Oldenburg, Germany: Bibliothecks-und Informationssystem der Carl von Ossietsky Universität Oldenburg

Jaschik, S. (2013) MOOC Mess, Inside Higher Education, February 4

Knox, J. (2014) Digital culture clash: ‘massive’ education in the e-Learning and Digital Cultures Distance Education, Vol. 35, No. 2

Kop, R. (2011) The Challenges to Connectivist Learning on Open Online Networks: Learning Experiences during a Massive Open Online Course International Review of Research into Open and Distance Learning, Vol. 12, No. 3

Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge University Press

Lyotard, J-J. (1979) La Condition postmoderne: rapport sur le savoir: Paris: Minuit

Mackness, J. (2013) cMOOCs and xMOOCs – key differences, Jenny Mackness, October 22

Milligan, C., Littlejohn, A. and Margaryan, A. (2013) Patterns of engagement in connectivist MOOCs, Merlot Journal of Online Learning and Teaching, Vol. 9, No. 2

Piech, C., Huang, J., Chen, Z., Do, C., Ng, A., & Koller, D. (2013). Tuned models of peer assessment in MOOCs. Palo Alto, CA: Stanford University.

Rumble, G. (2001) The costs and costing of networked learning, Journal of Asynchronous Learning Networks, Vol. 5, No. 2

Suen, H. (2104) Peer assessment for massive open online courses (MOOCs) International Review of Research into Open and Distance Learning, Vol. 15, No. 3

Tapscott, D. (undated) The transformation of education dontapscott.com

University of Ottawa (2013) Report of the e-Learning Working Group Ottawa ON: The University of Ottawa

van Zundert, M., Sluijsmans, D., van Merriënboer, J. (2010). Effective peer assessment processes: Research findings and future directions. Learning and Instruction, 20, 270-279

Watters, A. (2012) Top 10 Ed-Tech Trends of 2012: MOOCs Hack Education, December 3

Yousef, A. et al. (2014) MOOCs: A Review of the State-of-the-Art Proceedings of 6th International Conference on Computer Supported Education – CSEDU 2014, Barcelona, Spain


I’m glad I called this a ‘starter’ list. See the comment section for many more references, but especially Katy Morgan’s MOOC Research Literature Browser, which has many more articles published in peer review journals. Thanks to Jim Ellis, UKOU, for directing me to this, and above all to Katy Morgan for doing a much more thorough coverage of the literature than I have.

Thanks also to all the others who have made suggestions for this list.

Why MOOCs are only part of the answer for higher education

Listen with webReader
Formal education is the necessary launchpad for successful MOOCs

Formal education is the necessary launchpad for successful MOOCs

OK, except for the next post, which will be a list of publications on MOOCs for graduate students studying the topic, and a scenario for a ‘good’ MOOC, this will be my last post on MOOCs for a while.

This is the conclusion to my chapter on MOOCs for my open textbook, ‘Teaching in a Digital Age‘. This whole chapter is now published here. There will be a scenario illustrating what I define as a ‘good’ MOOC to go with this conclusion. Here is the extract:

The importance of context and design

I am frequently categorised as a major critic of MOOCs, which is somewhat surprising since I have been a longtime advocate of online learning. In fact I do believe MOOCs are an important development, and under certain circumstances they can be of tremendous value in education.

But as always in education, context is important. There is not one but many different markets and needs for education. A student leaving high school at eighteen has very different needs and will want to learn in a very different context from a 35 year old employed engineer with a family who needs some management education. Similarly a 65 year old man struggling to cope with his wife’s early onset of Alzheimers and desperate for help is in a totally different situation to either the high school student or the engineer. When designing educational programs, it has to be horses for courses. There is no single silver bullet or solution for every one of these various contexts.

Secondly, as with all forms of education, how MOOCs are designed matters a great deal. If they are designed inappropriately, in the sense of not developing the knowledge and skills needed by a particular learner in a particular context, then they have little or no value for that learner. However, designed differently and a MOOC may well meet that learner’s needs.

The potential of cMOOCs

So let me be more specific. cMOOCs have the most potential, because lifelong learning will become increasingly important, and the power of bringing a mix of already well educated and knowledgeable people from around the world to work with other committed and enthusiastic learners on common problems or areas of interest could truly revolutionise not just education, but the world in general.

However, cMOOCs at present are unable to do this, because they lack organisation and do not apply what is already known about how online groups work best. Once we learn these lessons and apply them, though, cMOOCs can be a tremendous tool for tackling some of the great challenges we face in the areas of global health, climate change, civil rights, and other ‘good civil ventures.’  The beauty of a cMOOC is that they involve not just the people who have the will and the power to make changes, but cMOOCs give every participant the power to define and solve the problems being tackled.

But socially transformative MOOCs will almost certainly benefit from the resources of strong institutions to provide initial impetus, simple to use software, overall structure, organization and co-ordination within the MOOC, and some essential human resources for supporting the MOOC when running. At the same time, it does not have to be an educational institution. It could be a Public Health Authority, or a broadcasting organization, or an international charity, or a consortium of organisations with a common interest. Also, of course, we need to recognise the danger that even cMOOCs  could be manipulated by corporate or government  interests. Finally, I don’t see cMOOCs as being a replacement for formal education, but as a rocket that needs formal education as its launch pad.

The limitations of xMOOCs

The real threat of xMOOCs is to the very large face-to-face lecture classes found in many universities at the undergraduate level. MOOCs, at a cost of around $20-$50 a student, are a more effective way of replacing such lectures. They are more interactive and permanent so students can go over the materials many times. I have heard MOOC instructors argue that their MOOCs are better than their classroom lectures. They put more care and effort into them.

However, we should question why we are teaching in this way on campus. Content is now freely available anywhere on the Internet – including MOOCs. What is needed is information management: how to identify the knowledge you need, how to evaluate it, how to apply it. MOOCs do not do that. They pre-select and package the information. My big concern with xMOOCs is their limitation, as currently designed, for developing the higher order intellectual skills needed in a digital world. Unfortunately, xMOOCs are taking the least appropriate design model for developing 21st century skills from on-campus teaching,  and moving this inappropriate design model online. Just because the lectures come from elite universities does not necessarily mean that learners will develop high level intellectual skills, even though the content is of the highest quality. More importantly, with MOOCs, relatively few students succeed, in terms of assessment, and those that do are tested mainly on comprehension and limited application of knowledge.

We can and have done much better in terms of skills for a digital age with other pedagogical approaches on campus, such as problem- or inquiry-based learning, and with online learning using more constructivist approaches in online credit courses, but these alternative methods to lectures do not scale so easily. The interaction between an expert and a novice still remains critical for developing deep understanding, transformative learning resulting in the learner seeing the world differently, and for developing high levels of evidence-based critical thinking, evaluation of complex alternatives, and high level decision-making. Computer technology to date is extremely poor at enabling this kind of learning to develop. This is why credit-based classroom and online learning still aim to have a relatively low instructor:student ratio and still need to focus a great deal on interaction between instructor and students.

I have no problem however with xMOOCs as a form of continuing education or as a source of open educational materials that can be part of a broader educational offering. They can be a valuable supplement to campus-based education. It is when the claim is made that they can replace both conventional education or the current design of online credit programs when I become really concerned. As a form of continuing education, low completion rates and the lack of formal credit is not of great significance. However, completion rates and quality assessment DO matter if MOOCs are being seen as a substitute or a replacement for formal education, even classroom lectures.

Undermining the public higher education system?

The real danger is that if we are not vigilant, MOOCs will undermine what is admittedly an expensive public higher education system. If elite universities can deliver MOOCs for free, why do we need crappy state universities? The risk is a sharply divided two tier system, with a relatively small number of elite universities catering to the rich and privileged, and developing the knowledge and skills that will provide rich rewards, and the masses going to MOOC-delivered courses with state universities providing minimal and low cost learner support for such courses. This would be both a social and economic disaster, because it would fail to produce enough learners with the high-level skills that are going to be needed for good jobs in the the coming years – unless you believe that automation will remove all decently paid jobs except for a tiny elite (bring on the Hunger Games).

It should be noted that even for credit-based online programs, content accounts for less than 15 per cent of the total cost over five years; the main costs required to ensure high quality outcomes and high rates of completion are spent on learner support, providing the learning that matters most. The kind of MOOCs being promoted by politicians and the media fail spectacularly to do this. We do need to be careful that the open education movement in general, and MOOCs in particular, are not used as a stick by those in the United States and elsewhere who are deliberately trying to undermine public education for ideological and commercial reasons. Open content, OERs and MOOCs do not automatically lead to open access to high quality credentials for everyone. In the end, a well-funded public higher education system remains the best way to assure access to higher education for the majority of the population.

Having said that, there is enormous scope for improvements within that system. MOOCs, open education and new media offer promising ways to bring about some much needed improvements. However, that means building on what we already know from the use of credit based online learning, from prior experience in open and distance learning, and designing courses and programs in a variety of ways appropriate to the wide range of learning needs. MOOCs can be one important part of that environment, but not a replacement for other forms of educational provision that meet different needs.

Key Takeaways

1. MOOCs are forcing every higher education institution to think carefully both about its strategy for online teaching and its approach to open education.

2. MOOCs are not the only form of online learning or of open educational resources. It is important to look at the strengths and weaknesses of MOOCs within the overall context of online learning and open-ness.

3. There are considerable differences in the design of MOOCs, reflecting different purposes and philosophies.

4. MOOCs are at still a relatively early stage of maturity. As their strengths and weaknesses become clearer, and as experience in improving their design grows, they are likely to occupy a significant niche within the higher education learning environment.

5. There are still major structural limitations in MOOCs for developing deep or transformative learning, or for developing the high level knowledge and skills needed in a digital age.

6. MOOCs could well replace some forms of traditional teaching (such as large lecture classes). However, MOOCs are more likely to remain an important supplement or alternative to other conventional education methods. They are not on their own a solution to the high cost of higher education, although MOOCs are and will continue to be an important factor in forcing change.

7. Perhaps the greatest value of MOOCs in the future will be for providing a means for tackling large global problems through community action.


I am now trying to finish Chapter 6, on design models. I will be writing about (a) personal learning environments and (b) flexible design models based on sound educational design principles.

As always, I welcome comments on either this final section on MOOCs, or on the Chapter as a whole. You can use either the comment page here or the one at the end of the Chapter.

Why the fuss about MOOCs? Political, social and economic drivers

Listen with webReader
Daphne Koller's TED talk on MOOCs (click to activate video)

Daphne Koller’s TED talk on MOOCs (click to activate video)

The end of MOOCs

This is the last part of my chapter on MOOCs for my online open textbook, Teaching in a Digital Age. In a series of prior posts, I have looked at the strengths and weaknesses of MOOCs. Here I summarise this section and look at why MOOCs have gained so much attention.

Brief summary of strengths and weaknesses of MOOCs

The main points of my analysis of the strengths and weaknesses of MOOCs can be summarised as follows:


  • the main value proposition of MOOCs is that through the use of computer automation and/or peer-to-peer communication MOOCs can eliminate the very large variable costs in higher education associated with providing learner support and quality assessment
  • MOOCs, particularly xMOOCs, deliver high quality content from some of the world’s best universities for free to anyone with a computer and an Internet connection
  • MOOCs can be useful for opening access to high quality content, particularly in Third World countries, but to do so successfully will require a good deal of adaptation, and substantial investment in local support and partnerships
  • MOOCs are valuable for developing basic conceptual learning, and for creating large online communities of interest or practice
  • MOOCs are an extremely valuable form of lifelong learning and continuing education
  • MOOCs have forced conventional and especially elite institutions to reappraise their strategies towards online and open learning
  • institutions have been able to extend their brand and status by making public their expertise and excellence in certain academic areas


  • the high registration numbers for MOOCs are misleading; less than half of registrants actively participate, and of these, only a small proportion successfully complete the course; nevertheless, absolute numbers of successful participants are still higher than for conventional courses
  • MOOCs are expensive to develop, and although commercial organisations offering MOOC platforms have opportunities for sustainable business models, it is difficult to see how publicly funded higher education institutions can develop sustainable business models for MOOCs
  • MOOCs tend to attract those with already a high level of education, rather than widen access
  • MOOCs so far have been limited in the ability to develop high level academic learning, or the high level intellectual skills needed in a knowledge based society
  • assessment of the higher levels of learning remains a challenge for MOOCs, to the extent that most MOOC providers will not recognise their own MOOCs for credit
  • MOOC materials may be limited by copyright or time restrictions for re-use as open educational resources

Why the fuss about MOOCs?

It can be seen from the previous section that the pros and cons of MOOCs are finely balanced. Given though the obvious questions about the value of MOOCs, and the fact that before MOOCs arrived, there had been substantial but quiet progress for over ten years in the use of online learning for undergraduate and graduate programs, you might be wondering why MOOCs have commanded so much media interest, and especially why a large number of government policy makers, economists, and computer scientists have become so ardently supportive of MOOCs, and why there has been such a strong, negative reaction, not only from many traditional university and college instructors, who are right to be threatened by some of the claims being made for MOOCs, but also from many professionals in online learning (see for instance, Bates, 2012; Daniel, 2012; Hill, 2012; Watters, 2013), who might be expected to be more supportive of MOOCs

It needs to be recognised that the discourse around MOOCs is not usually based on a cool, rational, evidence-based analysis of the pros and cons of MOOCs, but is more likely to be driven by emotion, self-interest, fear, or ignorance of what education is actually about. Thus it is important to explore the political, social and economic factors that have driven MOOC mania.

Massive, free and Made in America!

This is what I will call the intrinsic reason for MOOC mania. It is not surprising that, since the first MOOC from Stanford professors Andrew Ng and Daphne Koller attracted 270,000 sign-ups from around the world, since the course was free, and since it came from professors at one of the most prestigious private universities in the USA, the American media were all over it. It was big news in its own right, however you look at it, especially as courses from Sebastian Thrun, another Stanford professor, and others from MIT and Harvard followed shortly, with equally staggering numbers of participants.

It’s the Ivy Leagues!

Until MOOCs came along, the major Ivy League universities in the USA, such as Stanford, MIT, Harvard and UC Berkeley, as well as many of the most prestigious universities in Canada, such as the University of Toronto and McGill, and elsewhere, had largely ignored online learning in any form.

However, by 2011, online learning, in the form of for credit undergraduate and graduate courses, was making big inroads at many other, very respectable universities, such as Carnegie Mellon, Penn State, and the University of Maryland in the USA, and also in many of the top tier public universities in Canada and elsewhere, to the extent that almost one in three course enrolments in the USA were now in online courses. Furthermore, at least in Canada, the online courses were often getting good completion rates and matching on-campus courses for quality.

The Ivy League and other highly prestigious universities that had ignored online learning were beginning to look increasingly out of touch by 2011. By launching into MOOCs, these prestigious universities could jump to the head of the queue in terms of technology innovation, while at the same time protecting their selective and highly personal and high cost campus programs from direct contact with online learning. In other words, MOOCs gave these prestigious universities a safe sandbox in which to explore online learning, and the Ivy League universities gave credibility to MOOCs, and, indirectly, online learning as a whole.

It’s disruptive!

For years before 2011, various economists, philosophers and industrial gurus had been predicting that education was the next big area for disruptive change due to the march of new technologies (see for instance Lyotard, 1979; Tapscott, undated; Christensen and Eyring, 2011).

Online learning in credit courses though was being quietly absorbed into the mainstream of university teaching, through blended learning, without any signs of major disruption, but here with MOOCs was a massive change, providing evidence at long last in the education sector to support the theories of disruptive innovation.

It’s Silicon Valley!

It is no coincidence that the first MOOCs were all developed by entrepreneurial computer scientists. Ng and Koller very quickly went on to create Coursera as a private commercial company, followed shortly by Thrun, who created Udacity. Anant Agarwal, a computer scientist at MIT, went on to head up edX.

The first MOOCs were very typical of Silicon Valley start-ups: a bright idea (massive, open online courses with cloud-based, relatively simple software to handle the numbers), thrown out into the market to see how it might work, supported by more technology and ideas (in this case, learning analytics, automated marking, peer assessment) to deal with any snags or problems. Building a sustainable business model would come later, when some of the dust had settled.

As a result it is not surprising that almost all the early MOOCs completely ignored any pedagogical theory about best practices in teaching online, or any prior research on factors associated with success or failure in online learning. It is also not surprising as a result that a very low percentage of participants actually successfully complete MOOCs – there’s a lot of catching up still to do, but so far Coursera and to a lesser extent edX have continued to ignore educators and prior research in online learning. They would rather do their own research, even if it means re-inventing the wheel. The commercial MOOC platform providers though are beginning to work out a sustainable business model.

It’s the economy, stupid!

Of all the reasons for MOOC mania, Bill Clinton’s famous election slogan resonates most with me. It should be remembered that by 2011, the consequences of the disastrous financial collapse of 2008 were working their way through the economy, and particularly were impacting on the finances of state governments in the USA.

The recession meant that states were suddenly desperately short of tax revenues, and were unable to meet the financial demands of state higher education systems. For instance, California’s community college system, the nation’s largest, suffered about $809 million in state funding cuts between 2008-2012, resulting in a shortfall of 500,000 places in its campus-based colleges. Free MOOCs were seen as manna from heaven by the state governor, Jerry Brown.

One consequence of rapid cuts to government funding was a sharp spike in tuition fees, bringing the real cost of higher education sharply into focus. Tuition fees in the USA have increased by 7% per annum over the last 10 years, compared with an inflation rate of 4% per annum. Here at last was a possible way to rein in the high cost of higher education.

Now though the economy in the USA is picking up and revenues are flowing back into state coffers, and so the pressure for more radical solutions to the cost of higher education is beginning to ease. It will be interesting to see if MOOC mania continues as the economy grows, although the search for more cost-effective approaches to higher education is not going to disappear.

Don’t panic!

These are all very powerful drivers of MOOC mania, which makes it all the more important to try to be clear and cool headed about the strengths and weaknesses of MOOCs. The real test is whether MOOCs can help develop the knowledge and skills that learners need in a knowledge-based society. The answer of course is yes and no.

As a low-cost supplement to formal education, they can be quite valuable, but not as a complete replacement. They can at present teach conceptual learning, comprehension and in a narrow range of activities, application of knowledge. They can be useful for building communities of practice, where already well educated people or people with a deep, shared passion for a topic can learn from one another, another form of continuing education.

However, certainly to date, MOOCs have not been able to demonstrate that they can lead to transformative learning, deep intellectual understanding, evaluation of complex alternatives, and evidence-based decision-making, and without greater emphasis on expert-based learner support and more qualitative forms of assessment, they probably never will, at least without substantial increases in their costs.

At the end of the day, there is a choice between throwing more resources into MOOCs and hoping that some of their fundamental flaws can be overcome without too dramatic an increase in costs, or whether we would be better investing in other forms of online learning and educational technology that could lead to more cost-effective learning outcomes. I know where I would put my money, and it’s not into MOOCs.

Over to you

This will be my last contribution to the discussion of MOOCs for my book, so let’s have it!

1. Do you agree with the strengths and weaknesses of MOOCs that I have laid out? What would you add or remove or change?

2. What do you think of the drivers of MOOC mania? Are these accurate? Are there other, more important drivers of MOOC mania?

3. Do you even agree that there is a mania about MOOCs, or is their rapid expansion all perfectly understandable?


Bates, T. (2012) What’s right and what’s wrong about Coursera-style MOOCs, Online learning and distance education resources, August 5

Christensen, C. and Eyring, H. (2011), The Innovative University: Changing the DNA of Higher Education, New York, New York, USA: John Wiley & Sons,

Daniel, J. (2012). Making sense of MOOCs: Musings in a maze of myth, paradox and possibility.Journal of Interactive Media in Education, Vol. 3

Hill, P. (2012) Four Barriers that MOOCs must overcome to build a sustainable model, e-Literate, July 24

Lyotard, J-J. (1979) La Condition postmoderne: rapport sur le savoir: Paris: Minuit

Tapscott, D. (undated) The transformation of education dontapscott.com

Watters, A. (2013) MOOC Mania: Debunking the hype around massive, open online courses The Digital Shift, 18 April