March 28, 2015

Ensuring quality teaching in a digital age: key takeaways

Listen with webReader
Building the foundations of quality teaching and learning

Building the foundations of quality teaching and learning

I have now completed and published Chapter 11, ‘Ensuring quality teaching in a digital age‘, for my online open textbook, Teaching in a Digital Age.’

Unlike earlier chapters, I have not published this as a series of blog posts, as it is based on an earlier set of blog posts called: ‘Nine steps to quality online learning.’

However, there are some substantial changes. The focus here is as much on applying basic principles of course design to face-to-face and blended/hybrid learning as to fully online course design.

More importantly, this chapter attempts to pull together all the principles from all previous ten chapters into a set of practical steps towards the design of quality teaching in a digital age.

Purpose of the chapter

When you have read this chapter, and in conjunction with what has been learned in previous chapters, you should be able to:

  • define quality in terms of teaching in a digital age
  • determine what your preferred approaches are to teaching and learning
  • decide what mode of delivery is most appropriate for any course you are responsible for
  • understand why teamwork is essential for effective teaching in a digital age
  • make best use of existing resources for any course
  • choose and use the right technology and tools to support your learning
  • set appropriate learning goals for teaching in a digital age
  • design an appropriate course structure and set of learning activities
  • know when and how to communicate with learners
  • evaluate your teaching, make necessary improvements, and improve your teaching through further innovation.

What is covered in this chapter

Key takeaways

1. For the purposes of this book, quality is defined as: teaching methods that successfully help learners develop the knowledge and skills they will require in a digital age.

2. Formal national and institutional quality assurance processes do not guarantee quality teaching and learning. In particular, they focus on past ‘best’ practices, processes to be done before actual teaching, and often ignore the affective, emotional or personal aspects of learning. Nor do they focus particularly on the needs of learners in a digital age.

3. New technologies and the needs of learners in a digital age require a re-thinking of traditional campus-based teaching, especially where it is has been based mainly on the transmission of knowledge. This means re-assessing the way you teach and determining how you would really like to teach in a digital age. This requires imagination and vision rather than technical expertise.

4. It is important to determine the most appropriate mode of delivery, based on teaching philosophy, the needs of students, the demands of the discipline, and the resources available.

5. It is best to work in a team. Blended and especially fully online learning require a range of skills that most instructors are unlikely to have. Good course design not only enables students to learn better but also controls teacher and instructor workload. Courses look better with good graphic and web design and professional video production. Specialist technical help frees up teachers and instructors to concentrate on the knowledge and skills that students need to develop.

6. Full use should be made of existing resources, including institutionally-supported learning technologies, open educational resources, learning technology staff, and the experience of your colleagues.

7. The main technologies you will be using should be mastered, so you are professional and knowledgeable about their strengths and weaknesses for teaching.

8. Learning goals that are appropriate for learners in a digital age need to be clearly defined. The skills students need should be embedded within their subject domain, and these skills should be formally assessed.

9. A coherent and clearly communicable structure, and learning activities for a course, should be developed that are manageable in terms of workload for both students and instructor.

10. Regular and on-going instructor/teacher presence, especially when students are studying partly or wholly online, is essential for student success. This means effective communication between teacher/instructor and students. It is particularly important to encourage inter-student communication, either face-to-face or online.

11. The extent to which the new learning goals of re-designed courses aimed at developing the knowledge and skills needed in a digital age have been achieved should be carefully evaluated and ways in which the course could be improved should be identified.

Over to you

Although the previous blog posts on nine steps to quality online learning were well received (they have been used in some post-secondary education courses) feedback on this revised book version will be much appreciated.  I haven’t seen anything similar that tries to integrate basic principles across all three modes of delivery, so I am especially interested to see how these are perceived in terms of regular classroom and blended learning.

Up next

The final chapter, which will take a brief look at the institutional policies and strategies needed to support teachers and instructors wanting to teach well in a digital age. It will deal explicitly with what we should expect (and more importantly, not expect) of teachers and instructors, issues around faculty development and teacher training, working methods for teachers and instructors, and learning technology support.

I aim to finish this (and the whole book, at least in first draft form) by March 14. French and Spanish translations are already under way.

The implications of ‘open’ for course and program design: towards a paradigm shift

Listen with webReader

Print

10.10.1 Open and free Image: © Tony Bates 2015 CC BY-NC

10.10.1 An open and free beach, Pie de la Cuesta, Mexico
Image: © Tony Bates 2015 CC BY-NC

Print

I am usually very cautious not to use the term ‘paradigm shift’, but I do believe that the term is justified by the implications of open approaches to education, especially for higher education. This post aims to set out why this paradigm shift is slowly taking place.

This is the fourth of five posts on ‘open’ in education for my online open textbook, Teaching in a Digital Age. The previous three posts were:

The last post will be a scenario that illustrates the main points of this series of posts.

Although in recent years MOOCs have been receiving all the media attention, I believe that developments in open educational resources, ‘open textbooks, open research and open data will be far more important than MOOCs and far more revolutionary. Here are some reasons why.

10.10.1 Nearly all content will be free and open

Eventually most academic content will be easily accessible and freely available through the Internet – for anyone. This could well mean a shift in power from instructors to students. Students will no longer be dependent on instructors as their primary source of content. Already some students are skipping lectures at their local institution because the teaching of the topic is better and clearer on OpenLearn, MOOCs or the Khan Academy. If students can access the best lectures or learning materials for free from anywhere in the world, including the leading Ivy League universities, why would they want to get content from a middling instructor at Midwest State University? What is the added value that this instructor is providing for their students?

There are good answers to this question, but it means considering very carefully how content will be presented and shaped by an instructor that makes it uniquely different from what students can access elsewhere. For research professors this may include access to their latest, as yet unpublished, research; for other instructors, it may be their unique perspective on a particular topic, and for others, a unique mix of topics to provide an integrated, inter-disciplinary approach. What will not be acceptable to most students is repackaging of ‘standard’ content that can easily be found elsewhere on the Internet and at a higher quality.

Furthermore, if we look at knowledge management as one of the key skills needed in a digital age, it may be better to enable students to find, analyze, evaluate and apply content than for instructors to do it for them. If most content is available elsewhere, what students will look for increasingly from their local institutions is support with their learning, rather than the delivery of content. This means directing them to appropriate sources of content, helping when students are struggling with concepts, and providing opportunities for students to apply their knowledge and to develop and practice skills. It means giving prompt and relevant feedback as and when students need it. Above all, it means creating a rich learning environment in which students can study (see Chapter 5). It means moving teaching from information transmission to knowledge management, from selecting, structuring and delivering content to learner support.

Thus for most students within their university or college (with the possible exception of the most advanced research universities) the quality of the learning support will eventually matter more than the quality of content delivery, which they can get from anywhere. This is a major challenge for instructors who see themselves primarily as content experts.

10.2.2 Modularisation

Print

Figure 10.10.2 Four-sided pyramid, by Sol LeWitt, 1999 Image: Cliff, Flickr, CC Attribution 2.0

Figure 10.10.2 Four-sided pyramid, by Sol LeWitt, 1999
Image: Cliff, Flickr, © CC Attribution 2.0

Print

The creation of open educational resources, either as small learning objects but increasingly as short ‘modules’ of teaching, from anywhere between five minutes to one hour of material, and the increasing diversification of markets, is beginning to result in two of the key principles of OER being applied, re-use and re-mix. In other words, the same content, available in an openly accessible digital form, may be integrated into a range of different applications, and/or combined with other OER to create a single teaching module, course or program.

An early example of this was the development of an online, applied master’s program in educational technology at the University of British Columbia. The program started initially as a set of five courses leading to a post-graduate certificate. However, students were able to pay separately for each course, thus being able to take any one of the five courses or any combination, if that was their main interest. If they successfully passed all five courses they were awarded a certificate (nowadays, they would probably have received a badge for each course). Later, the university added five more courses to the existing five courses, and offered all ten courses as a master’s program. Students who had taken the previous five courses as a certificate were able to ladder these in and take the remaining five courses for a master (provided they met the university’s general admission requirements for graduate programs, i.e. they already had a bachelor degree). Tec de Monterrey, in Mexico, in partnership with UBC, took the materials and translated and adapted them into Spanish, enabling it to offer its own Master in Educational Technology throughout Latin America.

The Ontario government, through its online course development fund, is encouraging institutions to create OER. As a result, several universities have brought together faculty within their own institution but working in different departments that teach the same area of content (e.g. statistics) to develop ‘core’ OER that can be shared between departments. The logical next step would be for statistics faculty across the Ontario system to get together and develop an integrated set of OER modules on statistics that would cover substantial parts of the statistics curriculum. Working together would have the following benefits:

  • higher quality by pooling resources (two subject expert heads are better than one, combined with support from instructional designers and web producers)
  • more OER than one instructor or institution could produce
  • subject coherence and lack of duplication
  • more likelihood of faculty in one institution using materials created in another if they have had input to the selection and design of the OER from other institutions.

As the range and quality of OER increases, instructors (and students) will be able to build curriculum through a set of OER ‘building blocks’. The aim would be to reduce instructor time in creating materials (perhaps focusing on creating their own OER in areas of specific subject or research expertise), and using their time more in supporting student learning than in delivering content.

10.10.3 Disaggregation of services

Print

Figure 10.3 Disaggregation Image: © Aaron 'tango' Tan,   Flickr, CC Attribution 2.0

Figure 10.10.3 Disaggregation
Image: © Aaron ‘tango’ Tan, Flickr, CC Attribution 2.0

Print

Open education and digitization enable what has tended to be offered by institutions as a complete bundle of services to be split out and offered separately, depending on the market for education and the unique needs of individual learners. Learners will select and use those modules or services that best fit their needs. This is likely to be the pattern for lifelong learners in particular. Some early indications of this process are already occurring, although most of the really significant changes are yet to come:

  • admission and program counselling. This is a service already offered by Empire State University, a part of the State University of New York. Adult learners considering a return to study or a career change can receive mentoring about what courses and combinations they can take from within the college that fit with their previous life and their future wishes. In essence, within boundaries potential students are able to design their own degree. In the future, some institutions might specialise in this kind of service at a system level.
  • learner support. Students may have already determined what they want to study through the Internet, such as a MOOC. What they are looking for is help with their studies: how to write assignments, where to look for information, feedback on their work and thinking. They are not necessarily looking for a credit, degree or other qualification, but if they are they will pay for assessment separately. Currently, students pay private tutors for this service. However, it is feasible that institutions could also provide this service, provided that a suitable business model can be built.
  • assessment. Learners may feel that through prior study and work, they are able to take a challenge exam for credit. All they require from the institution is a chance to be assessed. Institutions such as Western Governors’ University or the Open Learning division of Thompson Rivers University are already offering this service., and this would be a logical next step for the many other universities or colleges with some form of prior learning assessment or PLAR.
  • qualifications. Learners may have acquired a range of credits, badges or certificates from a range of different institutions. The institution assesses these qualifications and experiences and helps the learner to take any further studies that are necessary, then awards the qualification. Prior learning assessment or PLAR is one step in this direction, but not the only one.
  • fully online courses and programs for learners who cannot or do not want to attend campus. The cost would be lower than for students receiving a full campus experience.
  • open access to content. The learner is not looking for any qualification, but wants access to content, particularly new and emerging knowledge. MOOCs are one example, but other examples include OpenLearn and open textbooks
  • the full campus experience. This would be the ‘traditional’ integrated package that full-time, campus-based students now receive. This would though be fully costed and much more expensive than any of the other disaggregated services.

Note that I have been careful not to link any of these services to a specific funding model. This is deliberate, because it could be:

  • covered through privatisation, where each service is separately priced and the user pays for that service (but not for others not used),
  • financed through a voucher system, whereby everyone at the age 18 is entitled to a notional amount of financial support from the state for post-secondary education, and can pay for a range of service from that voucher until their individual fund is exhausted, or
  • all or some services would be available for free as part of a publicly funded open education system.

Whatever the funding model, institutions will need to be able to price different services accurately. In any case, there is now an increasing diversity of learners’ needs, from high school students wanting full-time education, graduate students wanting to do research, and lifelong learners, most of whom will have already passed through a publicly funded higher education system, wanting to keep learning either for vocational or personal reasons.  This increasing diversity of needs requires a more flexible approach to providing educational opportunities in a digital age. Disaggregation of services and new models of funding, combined with increased accessibility to free, open content, are some ways in which this flexibility can be provided.

10.10.4 ‘Open’ course designs

The use of open educational resources could play out in a number of ways, including:

  • by students, in a learner-centered teaching approach that focuses on students accessing content on the Internet (and in real life) as part of developing knowledge, skills and competencies defined by the instructor, or (for advanced learners) being managed by learners themselves. However, this would not be restricted to officially approved open educational resources, but to everything on the Internet, because one of the core skills students will need is how to assess and evaluate different sources of information;
  • by a consortium of instructors or institutions creating common learning materials within a broader program context, that can be shared both within and outside the consortium. However, not only would the content be available, but also the underlying instructional principles, learning outcomes, learner assessment strategies, what learner support is needed, learner activities, and program evaluation techniques, so that other instructors or learners can adapt to their own context. This approach is already being taken by

We have already seen that the increasing availability of high quality open content may result in a shift from information transmission by the instructor to knowledge management by the learner. Earlier in the book, we also discussed a greater focus on skills development embedded within a subject domain than on the memorisation of content. Both these developments will enable the development of skills needed in a digital age.

These developments are likely to lead to a severe reduction in lecture-based teaching and a move towards more project work, problem-based learning and collaborative learning. It will also result in a move away from fixed time and place written examinations, to more continuous, portfolio-based forms of assessment.

The role of the instructor then will shift to providing guidance to learners on where and how to find content, how to evaluate the relevance and reliability of content, what content areas are core and what peripheral, and to helping students analyse, apply and present information, within a strong learning design that focuses on clearly defined learning outcomes, particularly with regard to the development of skills. Students will work mainly online and collaboratively, developing multi-media learning artefacts or demonstrations of their learning, managing their online portfolios of work, and editing and presenting selected work for assessment.

10.10.5 Conclusions

Despite all the hoopla around MOOCs, they are essentially a dead end with regard to providing learners who do not have adequate access to education with what they want: high quality qualifications. The main barrier to education is not lack of cheap content but lack of access to programs leading to credentials, either because such programs are too expensive, or because there are not enough qualified teachers, or both. Making content free is not a waste of time (if it is properly designed for secondary use), but it still needs a lot of time and effort to integrate it properly within a learning framework.

Open educational resources do have an important role to play in online education, but they need to be properly designed, and developed within a broader learning context that includes the critical activities needed to support learning, such as opportunities for student-instructor and peer interaction, and within a culture of sharing, such as consortia of equal partners and other frameworks that provide a context that encourages and supports sharing. In other words, OER need skill and hard work to make them useful, and selling them as a panacea for education does more harm than good.

Although open and flexible learning and distance education and online learning mean different things, the one thing they all have in common is an attempt to provide alternative means of high quality education or training for those who either cannot take conventional, campus-based programs, or choose not to.

Lastly, there are no insurmountable legal or technical barriers now to making educational material free. The successful use of OER does though require a particular mindset among both copyright holders – i.e. the creators of materials – and users – i.e. teachers and instructors who could use this material in their teaching. Thus the main challenge is one of cultural change.

In the end, a well-funded public higher education system remains the best way to assure access to higher education for the majority of the population. Having said that, there is enormous scope for improvements within that system. Open education and its tools offer a most promising way to bring about some much needed improvements.

10.10.6 The future is yours

This is just my interpretation of how approaches to ‘open’ content and resources could radically change the way we teach and how students will learn in the future. At the start of this chapter I created a scenario which suggests how this might play out in one particular program. More importantly, there is not just one future scenario, but many. The future will be determined by a host of factors, many outside the control of instructors. But the strongest weapon we have as teachers is our own imagination and vision. Open content and open learning reflect a particular philosophy of equality and opportunity created through education. There are many different ways in which we as teachers, and even more our learners, can decide to apply that philosophy. However, the technology now offers us many more choices in making these decisions.

Over to you

This is more an opinion piece, but based on an interpretation of real developments that are taking place at the moment. I’ve tried to balance the over-hyping of MOOCs and to a lesser extent OER with an analysis of what is still more potential than reality. As with all educational initiatives, whether these developments actually lead to significant change will depend on many factors, but nevertheless I believe the potential for change is real. More importantly, the changes I have outlined here are a response to the demands of a digital age.

I will be very interested in your response to this post

Next

A scenario that will attempt to provide a concrete vision of how these changes could play out. (I will probably place the scenario at the beginning of the chapter.)

 

Choosing design models for a digital age

Listen with webReader
Image: http://www.keepcalm-o-matic.co.uk/p/keep-calm-and-make-the-right-choice-3/

Image: http://www.keepcalm-o-matic.co.uk/p/keep-calm-and-make-the-right-choice-3/

Oh, dear, it appears that I missed out in posting the conclusion to my Chapter 6, on Models for Designing Teaching and Learning for my book, ‘Teaching in a Digital Age’, so here it is:

Choosing a model

This chapter covers a range of different design models or approaches to teaching. There are many more that could have been included. However, it is clear that there is a choice of possible models, depending on a number of factors, most of which are listed in Chapter 5, Building an Effective Learning Environment.

Your choice of model will then depend very much on the context in which you are teaching. However, I have suggested that a key criterion should be the suitability of the design model for developing the knowledge and skills that learners will need in a digital age. Other critical factors will be the demands of the subject domain, characteristics of the learners you will likely be teaching, the resources available, especially in terms of supporting learners, and probably most important of all, your own views and beliefs about what constitutes ‘good teaching.’

Furthermore, the models by and large are not mutually exclusive. They can probably be mixed and matched to a certain degree, but there are limitations in doing this. Moreover, a consistent approach will be less confusing not only to learners, but also to you as a teacher or instructor.

So: how would you go about choosing an appropriate design model? I set out below in Figure 6.20 one way of doing this. I have chosen five criteria as headings along the top of the table:

  • epistemological basis: in what epistemological view of knowledge is this model based? Does the model suggest a view of knowledge as content that must be learned, does the model suggest a rigid (‘correct’) way of designing learning (objectivist)? Or does the model suggest that learning is a dynamic process and knowledge needs to be discovered and is constantly changing (constructivist)? Does the model suggest that knowledge lies in the connections and interpretations of different nodes or people on networks and that connections matter more in terms of creating and communicating knowledge than the individual nodes or people on the network (connectivist)? Or is the model epistemologically neutral, in that one could use the same model to teach from different epistemological positions?
  • 20th century learning: does this design model lead to the kind of learning that would prepare people for an industrial society, with standardised learning outcomes, will it help identify and select a relatively small elite for higher education or senior positions in society, does it enable learning to be easily organised into similarly performing groups of learners?
  • 21st century learning: does the model encourage the development of the soft skills and the effective management of knowledge needed in a digital world? Does the model enable and support the appropriate educational use of the affordances of new technologies? Does it provide the kind of educational support that learners need to succeed in a volatile, uncertain, complex and ambiguous world? Does it enable and encourage learners to become global citizens?
  • academic quality: does it lead to deep understanding and transformative learning? Does it enable students to become experts in their chosen subject domain?
  • flexibility: does the model meet the needs of the diversity of learners today? Does it encourage open and flexible access to learning? Does it help teachers and instructors to adapt their teaching to ever changing circumstances?

Now these are my criteria, and you may well want to use different criteria (cost is another important factor), but I have drawn up the table this way because it has helped me consider better where I stand on the different models. Where I think the model is strong on a particular criterion, I have given it three stars, where weak, one star, and n/a for not applicable. Again, you may – no, should – rank the models differently. (See, that’s why I’m a constructivist – if I was an objectivist, I’d tell you what damned criteria to use!)

Figure 6.20 A comparison of different design models

Figure 6.20 A comparison of different design models

It can be seen that the only model that ranks highly on all three criteria of 21st century learning, academic quality and flexibility is online collaborative learning. Experiential learning and agile design also score highly. Transmissive lectures come out worst. This is a pretty fair reflection of my preferences. However, if you are teaching first year civil engineering to over 500 students, your criteria and rankings will almost certainly be different from mine. So please see Figure 6.20 as a heuristic device and not a general recommendation.

Common design characteristics

It is worth noting that, once again, there is extensive research and experience that point to the key factors to be taken into consideration in the successful implementation of teaching, whichever design model is being used. In essence we are talking about using best practices in the design of teaching. Although different design models have different approaches to teaching, there is a significant number of the core principles in the design of teaching and learning that extend across several of the design models. These can be summarised as follows:

  • know your students: identify the key characteristics of the students you will be or could be teaching, and how that will influence your methods of teaching
  • know what you are trying to achieve: in any particular course or program what are the critical areas of content and the particular skills or learning outcomes that students need to achieve as a result of your teaching? What is the best way to identify and assess these desired outcomes?
  • know how students learn: what drives learning for your students? How do you engage or motivate students?  How can you best support that learning?
  • know how to implement this knowledge: What kind of learning environment do you need to create to support student learning? What design model(s) will work best for you within that environment?
  • know how to use technology to support your teaching: this is really a sub-set of the previous point, and is discussed in much more detail in other chapters
  • know what resources you have, and what can be done within the constraints you have to work with
  • ensure that the assessment of students actually measures the intended learning outcomes – and unintended ones.

Design models and the quality of teaching and learning

Lastly, the review of different models indicate some of the key issues around quality:

  • first, what students learn is more likely to be influenced by choosing an appropriate design model for the context in which you are teaching, than by focusing on a particular technology or delivery method. Technology and delivery method are more about access and flexibility and hence learner characteristics than they are about learning. Learning is affected more by pedagogy and the design of instruction.
  • second, different design models are likely to lead to different kinds of learning outcomes. This is why there is so much emphasis in this book on being clear about what knowledge and skills are needed in a digital age. These are bound to vary somewhat across different subject domains, but only to a limited degree. Understanding of content is always going to be important, but the skills of independent learning, critical thinking, innovation and creativity are even more important. Which design model is most likely to help develop these skills in your students?
  • third, quality depends not only on the choice of an appropriate design model, but also on how that approach to teaching is implemented. Online collaborative learning can be done well, or it can be done badly. The same applies to other design models. Following core design principles is critical for the successful use of any particular design model. Also there is considerable research on what the conditions are for success in using some of the newer models. The findings from such research need to be applied when implementing a particular model.
  • lastly students and teachers get better with practice. If you are moving to a new design model, give yourself (and your students) time to get comfortable with it. It will probably take two or three courses where the new model is applied before you begin to feel comfortable that it is producing the results you were hoping for. However, it is better to make some mistakes along the way than to continue to teach comfortably, but not produce the graduates that are needed in the future.

Even when we have chosen a particular design model or teaching approach, though, it still has to be implemented. The remaining chapters in this book will focus then on implementation.

Feedback, please

1. What other criteria might you have used for deciding on an appropriate model?

2. Is this the best way to make a decision about a particular design approach to teaching? If not, how would you go about it?

3. Any other comments about design models for teaching and learning? Any important ones missed?

Next

Chapter 8, on ‘Understanding Technology in Education.’ (Chapter 7 on MOOCs has already been published.)

A ‘starter’ bibliography on design models for teaching and learning

Listen with webReader

Image: © educatorstechnology.com, 2014

For the increasing number of students doing Masters’ dissertations or Ph.D’s on course or instructional design I have collected together for convenience all the references made in my chapter on course design models for my open textbook, ‘Teaching in a Digital World.’ However, there are many other publications – this cannot be considered a comprehensive list. Also note the date of this blog post: anything published after this will not be here, unless you let me know about it. I also tend to give preference to open access publications, which means that there are a lot of articles in academic journals not on this list that should be there.

In return, I would really appreciate other suggestions for references that you have found to be valuable or influential (open access or not.).

Adamson, C. (2012) Learning in a VUCA world, Online Educa Berlin News Portal, November 13

Banchi, H., and Bell, R. (2008). The Many Levels of Inquiry Science and Children, Vol. 46, No. 2

Bates, A. and Poole, G. (2003) Effective Teaching with Technology in Higher Education: Foundations for Success San Francisco: Jossey-Bass

Brindley, J., Walti, C. and Blashke, L. (2009) Creating Effective Collaborative Learning Groups in an Online Environment International Review of Research in Open and Distance Learning, Vol. 10, No. 3

Brown, J. and Duguid, P. (2000). “Balancing act: How to capture knowledge without killing it”. Harvard Business Review.

Cambridge, D., Kaplan, S. and Suter, V. (2005) Community of Practice Design Guide Louisville  CO: EDUCAUSE

Christensen, C. (2010) Disrupting Class, Expanded Edition: How Disruptive Innovation Will Change the Way the World Learns New York: McGraw-Hill

Collins, E. (2013) SJSU Plus Augmented Online Learning Environment Pilot Project Report San Jose CA: San Jose State University

Dick, W., and Carey, L. (2004). The Systematic Design of Instruction. Allyn & Bacon; 6 edition Allyn & Bacon

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

Entwistle, N. (2000) Promoting deep learning through teaching and assessment: conceptual frameworks and educational contexts Leicester UK: TLRP Conference

Garrison, R., Anderson, A. and Archer, W. (2000) Critical Inquiry in a Text-based Environment: Computer Conferencing in Higher Education The Internet and Higher Education, Vol. 2, No. 3

Gijselaers, W., (1995) ‘Perspectives on problem-based learning’ in Gijselaers, W, Tempelaar, D, Keizer, P, Blommaert, J, Bernard, E & Kapser, H (eds) Educational Innovation in Economics and Business Administration: The Case of Problem-Based Learning. Dordrecht, Kluwer.

Harasim, L. (2012) Learning Theory and Online Technologies New York/London: Routledge

Herreid, C. F. (2007). Start with a story: The case study method of teaching college science. Arlington VA: NSTA Press.

Irby, D. (1994) Three exemplary models of case-based teaching Academic Medicine, Vol. 69, No. 12

Kirshner, P., Sweller, J. amd Clark, R. (2006) Why Minimal Guidance During Instruction Does Not Work: An Analysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching Educational Psychologist, Vo. 41, No.2

Knox, J. (2014) Digital culture clash: ‘massive’ education in the e-Learning and Digital Cultures Distance Education, Vol. 35, No. 2

Laurillard, D. (2001) Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies New York/London: Routledge

Larmer, J. and Mergendoller, J. (2010) Seven essentials for project-based learning Educational Leadership, Vol. 68, No. 1

Marcus, G. Taylor, R. and Ellis, R. (2004) Implications for the design of online case-based learning activities based on the student blended learning experience: Perth, Australia: Proceedings of the ACSCILITE conference, 2004

Marton, F. and Saljö, R. (1997) Approaches to learning, in Marton, F., Hounsell, D. and Entwistle, N. (eds.) The experience of learning: Edinburgh: Scottish Academic Press (out of press, but available online)

Meier, D. (2000). The Accelerated Learning Handbook. New York: McGraw-Hill

Moon, J.A. (2004). A Handbook of Reflective and Experiential Learning: Theory and Practice. New York: Routledge Falmer.

Morrison, Gary R. (2010) Designing Effective Instruction, 6th Edition. New York: John Wiley & Sons

Paloff, R. and Pratt, K. (2005) Collaborating Online: Learning Together in Community San Francisco: Jossey-Bass

Paloff, R. and Pratt, K. (2007) Building Online Learning Communities: Effective Strategies for the Virtual Classroom San Francisco: Jossey-Bass

Pask, G. (1975) Conversation, Cognition and Learning Amsterdam/London: Elsevier (out of press, but available online)

Salmon, G. (2000) e-Moderating: The Key to Teaching and Learning Online London: Taylor and Francis

Scardamalia, M. and Bereiter, C. (2006) Knowledge Building:  Theory, pedagogy and technology in Sawyer, K. (ed.) Cambridge Handbook of the Learning Sciences New York: cambridge University Press

Smith, M. K. (2003) ‘Communities of practice’, the encyclopedia of informal education, accessed 26 September, 2014

Strobel, J. , & van Barneveld, A. (2009). When is PBL More Effective? A Meta-synthesis of Meta-analyses Comparing PBL to Conventional Classrooms. Interdisciplinary Journal of Problem-based Learning, Vol. 3, No. 1

Wenger, E. (2000) Communities of Practice: Learning, Meaning and Identity Cambridge UK: Cambridge University Press

Wenger, E. (2014) Communities of practice: a brief introduction, accessed 26 September, 2014

Wenger, E, McDermott, R., and Snyder, W. (2002). Cultivating Communities of Practice (Hardcover). Harvard Business Press; 1 edition.

‘Agile’ Design: Flexible designs for the digital age

Listen with webReader
Zen Yoga Chair: Image © Best Interior and Architecture,

Zen Yoga Chair: Image © Best Interior and Architecture

Before I was rudely interrupted by MOOCs, I had almost finished my chapter on Models for Designing Teaching and Learning for my open textbook, ‘Teaching in a Digital Age.‘ I have now finished the last of the design models, which I have called ‘Agile Design’ because it is a new and as yet unestablished approach to course design.

I have to admit going out on a limb with this particular section, because I couldn’t really find any prior literature that adequately describes this approach, and there are elements of other design models that appear in ‘Agile’ design, but I have seen a few examples of it and they are clearly different from other approaches to course design. All this means that I’m really looking for feedback and advice, so here goes.

Scenario E: ETEC 522: Ventures in e-Learning

Mike: Hey, George, come and sit down and tell Allison and Rav about that weird course you’re taking from UBC.

George: Hi, you two. Yeah, it’s a great course, very different from any other I’ve taken.

Rav.: What’s it about?

George: It’s how to go about starting up a technology company.

Allison: But I thought you were doing a masters in education.

George: Yeah, I am. This course is looking at how new technologies can be used in education and how to build a business around one of these technologies.

Mike: Really, George? So what about all your socialist principles, the importance of public education, and all that? Are you giving up and going to become a fat capitalist?

George: No, it’s not like that. What the course is really making me do is think about how we could be using technology better in school or college.

Mike: And how to make a profit out of it, by the sound of it.

Rav.: Shut up, Mike – I’m curious, George, since I’m doing a real business program. You’re going to learn how to set up a business in 13 weeks? Gimme a break.

George: It’s more about becoming an entrepreneur – someone who takes risks and tries something different.

Mike.: With someone else’s money.

George: Do you really want to know about this course, or are you just wanting to give me a hard time?

Allison: Yes, shut up, Mike. Have you chosen a technology yet, George?

George: Almost. We spend most of the course researching and analysing emerging technologies that could have an application in education. We have to find a technology, research it then come up with a plan of how it could be used in education, and how a business could be built around it. But I think the real aim is to get us to think about how technology could improve or change teaching or learning..

Rav.: So what’s the technology you’ve chosen?

George: You’re jumping too far ahead, Rav. We go through two boot camps, one on analysing the edtech marketplace, and one on entrepreneurship: what it takes to be an entrepreneur. Why are you laughing, Mike?

Mike: I just can’t see you in combat uniform, crawling through tubes under gun fire, with a book in your hand.

George: Not that kind of bootcamp. This course is totally online. Our instructor points us in the direction of a few technologies to get us started, but because there’s more stuff coming out all the time, we’re encouraged to make our own choices about what to research. And we all help each other. I must have looked at more than 50 products or services so far, and we all share our analyses. I’m down to possibly three at the moment, but I’m going to have to make my mind up soon, as I have to do a YouTube elevator pitch for my grade.

Rav.: A what?

George: If you look at most of these products, there’s a short YouTube video that pitches the business. I’ve got to make the case for whatever technology I choose in just under eight minutes. That’s going to be 25% of my grade.

Allison: Wow, that’s tough.

George: Well, we all help each other. We have to do a preliminary recording, then everyone pitches in to critique it. Then we have a few days to send in our final version.

Allison: What else do you get grades for?

George: I got 25% of my marks for an assignment that analysed a particular product called Dybuster which is used to help learners with dyslexia. I looked mainly at its educational strengths and weaknesses, and its likely commercial viability. For my second assignment, also worth 25%, we had to build an application of a particular product or service, in my case a module of teaching using a particular product. There were four of us altogether working as  a team to do this. Our team designed a short instructional module that showed a chemical reaction, using an off-the-shelf online simulation tool that is free for people to use. I’ll get my last 25% from an e-portfolio where I’ve collected together my contributions to helping other students on the course with their projects.

Allison: But what I don’t understand is: what’s the curriculum? What text books do you have to read? What do you have to know?

George: Well, there isn’t a set curriculum, except for the two boot camps, and they only take a week each. I’ve already learned a lot, just by searching and analysing different products over the Internet. We have to think about and justify our decisions. What kind of teaching philosophy do they imply? What criteria am I using when I support or reject a particular product? Is this a sustainable tool? I don’t want to have to get rid of good teaching material because the company’s gone bust and doesn’t support the technology I’m using any more. What I’m really learning though is to think about technology differently. Previously I wasn’t really thinking about teaching differently. I was just trying to find a technology that made my life easier. But this course has woken me up to the real possibilities. I feel I’m in a much better position now to shake up my own school and move them into the digital age.

Allison (sighs): Well, I guess that’s the difference between an undergraduate and a graduate course. You couldn’t do this unless you already knew a lot about education, could you?

George: I’m not so sure about that, Allison. It doesn’t seem to have stopped a lot of entrepreneurs from developing tools for teaching!

Mike: George, I’m sorry. I can’t wait for you to become a rich capitalist – it’s your turn to buy the drinks.

Scenario based on a UBC graduate course for the Master in Educational Technology.

The instructors are David Vogt and David Porter, assisted by Jeff Miller, the instructional designer for the course.

6.8.1 Why the need for more flexible design models?

Adamson (2012) states:

The systems under which the world operates and the ways that individual businesses operate are vast and complex – interconnected to the point of confusion and uncertainty. The linear process of cause and effect becomes increasingly irrelevant, and it is necessary for knowledge workers to begin thinking in new ways and exploring new solutions.

In particular knowledge workers must deal with situations and contexts that are volatile, uncertain, complex and ambiguous (what Adamson calls a VUCA environment). This certainly applies to teachers working with ever new, emerging technologies, very diverse students, and a rapidly changing external world that puts pressure on institutions to change.

If we look at course design, how does a teacher respond to rapidly developing new content, new technologies or apps being launched on a daily basis, to a constantly changing student base, to pressure to develop the knowledge and skills that are needed in a digital age? For instance, even setting prior learning outcomes is fraught in a VUCA environment, unless you set them at an abstract ‘skill’ level such as thinking flexibly, networking, and information retrieval and analysis. Students need to develop the key knowledge management skills of knowing where to find relevant information, how to assess, evaluate and appropriately apply such information. This means exposing them to less than certain knowledge and providing them with the skills, practice and feedback to assess and evaluate such knowledge, then apply that to solving real world problems.

In order to do this, learning environments need to be created that are rich and constantly changing, but which at the same time enable students to develop and practice the skills and acquire the knowledge they will need in a volatile, uncertain, complex and ambiguous world.

6.8.2 Core features of flexible design models

Describing the design features is a challenge, for two reasons. First, there is no single approach to flexible design. The whole point of a flexible design is to be adaptable to the circumstances in which it operates. Second, it is only with the development of light, easy to use technology and media in the last few years that instructors and course designers have started to break away from the standard design models, so flexible designs are still emerging.

First, it is important to distinguish this approach from rapid instructional design (Meier, 2000) or rapid prototyping, which are really both streamlined versions of the ADDIE model. Although rapid instructional design/rapid protyping enable courses or modules to be designed more quickly (especially important for corporate training), they still follow the same kind of sequential or iterative processes as in the ADDIE model, but in a more compressed form. Rapid instructional design and rapid prototyping might be considered particular kinds of flexible design, but they lack some of the most important characteristics outlined below:

  • Light and nimble: if ADDIE is a 100-piece orchestra, with a complex score and long rehearsals, then flexible design models are a jazz trio who get together for a single performance then break up until the next time. Although there may be a short preparation time before the course starts, most of the decisions about what will go into the course, what tools will be used, what activities learners will do, and sometimes even how students will be assessed, are decided as the course progresses. On the teaching side, there are usually only a few people involved in the actual design, one or sometimes two instructors and possibly an instructional designer, who nevertheless meet frequently during the offering of the course to make decisions based on feedback from learners and how learners are progressing through the course. However, many more content contributors may be invited – or spontaneously offer – to participate on a single occasion as the course progresses.
  • Content, learner activities, tools used and assessment vary, according to the changing environment. The content to be covered in a course is likely to be highly flexible, based more on emerging knowledge and the interests or prior experience of the learners, although the core skills that the course aims to develop are more likely to remain constant. For instance, for ETEC 522, the overall objective is to develop the skills needed to be a pioneer or innovator in education, and this remains constant over each iteration of the course. However, because the technology is rapidly developing with new products, apps and services every year, the content of the course is quite different from year to year. Also learner activities and methods of assessment are also likely to change, because students can use new tools or technology themselves for learning as they become available. Very often learners themselves seek out and organise much of the core content of the course and are free to choose what tools they use.
  • The design attempts to exploit the affordances of either existing or emerging technologies. Flexible design aims to exploit fully the educational potential of new tools or software, which means sometimes changing at least sub-goals. This may mean developing different skills in learners from year to year, as the technology changes and allows new things to be done. The emphasis here is not so much on doing the same thing better with new technology, but striving for new and different outcomes that are more relevant in a digital world. ETEC 522 for instance did not start with a learning management system. Instead,  a web site, built in WordPress, was used as the starting point for student activities, because students as well as instructors were posting content, but in another year the content focus of the course was mainly on mobile learning, so apps and other mobile tools were strong components of the course.
  • Sound, pedagogical principles guide the overall design of a course – to a point. Just as most successful jazz trios work within a shared framework of melody, rhythm, and musical composition, so is flexible design shaped by overarching principles of best practice. Most successful flexible designs have been guided by core design principles associated with ‘good’ teaching, such as clear learning outcomes or goals, assessment linked to these goals, strong learner support, including timely and individualised feedback, active learning, collaborative learning, and regular course maintenance based on learner feedback, all within a rich learning environment. Sometimes though deliberate attempts are made to move away from an established best practice for experimental reasons, but usually on a small scale, to see if the experiment works without risking the whole course..
  • Experiential, open and applied learning. Usually this kind of course design is strongly embedded in the real, external world. Much or all the course may be open to other than registered students. For instance, a good deal of ETEC 522, such as the final YouTube business pitches, is openly available to those interested in the topics. Sometimes this results in entrepreneurs contacting the course with suggestions for new tools or services, or just to share experience. Another example is a course on Latin American studies from a Canadian university. This particular course had an open, student-managed wiki, where they could discuss contemporary events as they arose. This course was active at the same time that the Argentine government nationalised the Spanish oil company, Repsol. Several students posted comments critical of the government action, but after a week, a professor from a university in Argentina, who had come across the wiki by accident while searching the Internet, responded, laying out a detailed defence of the government’s policy. This was then made a formal topic for discussion within the course. Such courses may though be only partially open. Discussion of sensitive subjects for instance may still take place behind a password controlled discussion forum, while other parts of the course may be open to all.

As experience grows in this kind of design, other and perhaps clearer design principles are likely to emerge.

Strengths and weaknesses of flexible design models

The main advantage of flexible design is that it focuses directly on preparing students for a volatile, uncertain, complex and ambiguous world. It aims explicitly at helping students develop many of the specific skills they will need in a digital age, such as knowledge management, multimedia communications skills, critical thinking, innovation, and digital literacy embedded within a subject domain. Where flexible design has been successfully used, students have found the design approach highly stimulating and great fun, and instructors have been invigorated and enthused with their teaching. Flexible design enables courses to be developed and offered quickly and at much lower initial cost than ADDIE-based approaches.

However, flexible design approaches are very new and have not really been much written about, never mind evaluated. There is no ‘school’ or set of agreed principles to follow. (Maybe it needs a catchy name, which is why, somewhat tongue in cheek, I originally entitled the post/chapter: ‘Flash Design.’ However, thanks to Antonio Dias de Figueiredo’s comment below, I think ‘agile’ design is a better term.) The flexible design model though is not however the same as rapid instructional design (Meier, 2000) which is really a boiled down version of the ADDIE approach, but it could be argued that most of the things in flexible design are covered in other teaching models, such as discovery and/or experiential learning. Despite this, innovative instructors are beginning to develop courses such as ETEC 522 and there is a consistency in the basic design principles that give them a certain coherence and shape, even though each course or program appears on the surface to be very different (another example of flexible design, but with quite a different overall program from ETEC 522, is the Integrated Science program at McMaster University.)

Certainly flexible design approaches require confident instructors willing to take a risk, and success is heavily dependent on instructors having a good background in best teaching practices and/or strong instructional design support from innovative and creative instructional designers. Because of the relative lack of experience in such design approaches the limitations are not well identified yet. For instance, this approach can work well with relatively small class sizes but how well will it scale? Successful use probably also depends on learners already having a good foundational knowledge base in the subject domain. Nevertheless I expect more flexible designs for learning to grow over the coming years, because they are more likely to meet the needs of a VUCA world.

Over to you

What I really need here are more examples of flexible learning design. Do you know a course that meets these five design principles? If so please let me know (and a link to the course or course materials would be really appreciated). I would expect that some courses built around open educational resources might reflect this model, for instance.

Now for some more specific questions:

1. Is this design model truly different from others or is it just a variation on other design models? If so which?

2. If you have experience of teaching in this way, can you add to the strengths or weaknesses of this approach and also provide  a short description of the how the course is designed?

3. Do you think an ‘agile’/flexible design approach will increase or undermine academic excellence? What are your reasons?

Next

I will be finalizing the chapter on design models, so I will do a final post that sets out the main conclusion on design models and key takeaways from the chapter.