January 27, 2015

Seeking the unique pedagogical characteristics of video

Listen with webReader

Figure 9. The Open University on iTunesU

Figure 9. The Open University on iTunesU

This is the third post on the unique characteristics of different media, for my open textbook, Teaching in a Digital Age.

Although it will be seen that there are good pedagogical reasons for using video, it presents much more of a challenge to faculty than the use of text or audio. Producing video that exploits the unique characteristics of video is not something that most faculty have the time or ability to do themselves, and adds substantial cost to a course.

The alternative of course is video available as an open educational resources, and good luck with that. I had great difficulty in finding suitable open educational resources to use as examples (although there are talking heads in abundance). If anything, the availability of good quality video OERs has declined recently, with much of the material previously available through Open Learn and other sources such as iTunesU and even YouTube now removed. Copyright of good quality educational video is still pretty restricted, probably because of the high cost of producing it.

Reliability of OERs is becoming a critically important issue. If an instructor cannot rely on an OER being available in a year or two after incorporation into their teaching, OERs won’t get used. Maybe this is after all a good reason for learning object repositories.

Ideally, I would like to be able to link each one of these unique features to an open source video example. After two days trawling, I’ve come up with one (thank you, University of Nottingham, and Clint Lalonde for suggesting it!) So any suggestions for ‘open’ videos that provide examples for each of the characteristics below would be really appreciated. (Yes, I know I should ask a librarian, but I’m working on my own these days).

More power, more complexity

Although there have been massive changes in video technology over the last 25 years, resulting in dramatic reductions in the costs of both creating and distributing video, the unique educational characteristics are largely unaffected. (More recent computer-generated media such as simulations, will be analysed under ‘Computing’, in Section 9.5.4).

Video is a much richer medium than either text or audio, as in addition to its ability to offer text and sound, it can also offer dynamic or moving pictures. Thus while it can offer all the affordances of audio, and some of text, it also has unique pedagogical characteristics of its own. Once again, there has been considerable research on the use of video in education, and again I will be drawing on research from the Open University (Bates, 1985 2005; Koumi, 2006) as well as from Mayer (2009).

Presentational features

Video can be used to:

  • demonstrate experiments or experimental situations, particularly:
  • illustrate principles involving dynamic change or movement
  • illustrate abstract principles through the use of specially constructed physical models
  • illustrate principles involving three-dimensional space
  • demonstrate changes over time through the use of animation, slow-motion, or speeded-up video
  • substitute for a field visit, by:
    • providing students with an accurate, comprehensive visual picture of a site, in order to place the topic under study in context
    • demonstrating the relationship between different elements of a system under study (e.g. production processes, ecological balance)
    • by identifying and distinguishing between different classes or categories of phenomena at the site (e.g. in forest ecology)
    • to observe differences in scale and process between laboratory and mass-production techniques
    • through the use of models, animations or simulations, to teach certain advanced scientific or technological concepts (such as theories of relativity or quantum physics) without students having to master highly advanced mathematical techniques,
  • bring students primary resource or case-study material, i.e. recording of naturally occurring events which, through editing and selection, demonstrate or illustrate principles covered elsewhere in a course
  • demonstrate ways in which abstract principles or concepts developed elsewhere in the course have been applied to real-world problems
  • synthesise a wide range of variables into a single recorded event, e.g. to suggest how real world problems can be resolved
  • demonstrate decision-making processes or decisions ‘in action’ (e.g. triage in an emergency situation) by:
    • recording the decision-making process as it occurs in real contexts
    • recording ‘staged’ simulations, dramatisation or role-playing
  • demonstrate correct procedures in using tools or equipment (including safety procedures)
  • demonstrate methods or techniques of performance (e.g. mechanical skills such as stripping and re-assembling a carburetor, sketching, drawing or painting techniques, or dance)
  • record and archive events that are crucial to topics in a course, but which may disappear or be destroyed in the near future, such as, for instance, street graffiti or condemned buildings
  • demonstrate practical activities to be carried out by students, on their own.

Skills development

This usually requires the video to be integrated with student activities. The ability to stop, rewind and replay video becomes crucial for skills development, as student activity usually takes place separately from the actual viewing of the video. This may mean thinking through carefully activities for students related to the use of video.

If video is not used directly for lecturing, research clearly indicates that students generally need to be guided as to what to look for in video, at least initially in their use of video for learning. There are various techniques for relating concrete events with abstract principles, such as through audio narration, using a still frame to highlight the observation, or repeating a small section of the program. Bates and Gallagher (1977) found that using video for developing higher order analysis or evaluation was a teachable skill that needs to be built into the development of a course or program, to get the best results.

Typical uses of video for skills development include:

  • enabling students to recognize naturally occurring phenomena or classifications (e.g. teaching strategies, symptoms of mental illness, classroom behaviour) in context
  • enabling students to analyse a situation, using principles either introduced in the video recording or covered elsewhere in the course, such as a textbook or lecture
  • interpreting artistic performance (e.g. drama, spoken poetry, movies, paintings, sculpture, or other works of art)
  • analysis of music composition, through the use of musical performance, narration and graphics
  • testing the applicability or relevance of abstract concepts or generalisations in real world contexts
  • looking for alternative explanations for real world phenomena.

Strengths and weaknesses of video as a teaching medium

One factor that makes video powerful for learning is its ability to show the relationship between concrete examples and abstract principles, with usually the sound track relating the abstract principles to concrete events shown in the video. Video is particularly useful for recording events or situations where it would be too difficult, dangerous, expensive or impractical to bring students to such events.

Thus its main strengths are as follows:

  • linking concrete events and phenomena to abstract principles and vice versa
  • the ability of students to stop and start, so they can integrate activities with video
  • provides alternative approaches that can help students having difficulties in learning abstract concepts
  • adds substantial interest to a course by linking it to real world issues
  • a growing amount of freely available, high quality academic videos
  • good for developing some of the higher level intellectual skills and some of the more practical skills needed in a digital age
  • the use of low cost cameras and free editing software enables some forms of video to be cheaply produced.

The main weaknesses of video are:

  • many faculty have no knowledge or experience in using video other than for recording lecturing
  • there is currently a very limited amount of high quality educational video free for downloading, because the cost of developing high quality educational video that exploits the unique characteristics of the medium is still relatively high. Links also often go dead after a while, affecting the reliability of outsourced video. The availability of free material for educational use will improve over time, but currently finding appropriate and free videos that meet the specific needs of a teacher or instructor can be time-consuming or such material may just not be available or reliable
  • creating original material that exploits the unique characteristics of video is time-consuming, and still relatively expensive, because it usually needs professional video production
  • to get the most out of educational video, students need specially designed activities that sit outside the video itself
  • students often reject videos that require them to do analysis or interpretation; they often prefer direct instruction that focuses primarily on comprehension. Such students need to be trained to use video differently, which requires time to be devoted to developing such skills.

For these reasons, video is not being used enough education. When used it is often an afterthought or an ‘extra’, rather than an integral part of the design, or is used merely to replicate a classroom lecture, rather than exploiting the unique characteristics of video.

 Assessment

If video is being used to develop the skills outlined in Section 9.5.3.3, then it is essential that these skills are assessed and count for grading. Indeed, one possible means of assessment might be to ask students to analyse or interpret a selected video, or even to develop their own media project, using video they themselves have collected or produced, using their own devices.

Activity 9.4

1. Take one of the courses you are teaching. What key presentational aspects of video could be important for this course?

2. Look at the skills listed in Section 1.3 of this book. Which of these skills would best be developed through the use of video rather than other media? How would you do this using video-based teaching?

3. Under what conditions would it be more appropriate for students to be assessed by asking them to analyse or make their own video recording? How could this be done under assessment conditions?

4. Type in the name of your topic + video into Google.

  • How many videos come up?
  • What’s their quality like?
  • Could you use any of them in your teaching?
  • If so, how would you integrate them into your course?
  • Could you make a better video on the topic?
  • What would enable you to do this?

Here are some criteria I would apply to what you find:

  • it is relevant to what you want to teach
  • it demonstrates clearly a particular topic or subject and links it to what the student is intended to learn
  • it is short and to the point
  • the example is well produced (clear camera work, good presenter, clear audio)
  • it provides something that I could not do easily myself
  • it is freely available for non-commercial use

I have to say that most of the examples I found on the Internet do NOT meet all of these criteria! The videos I have linked to in this section do, but then some are produced for the Open University. Can traditional university in-house media departments meet this standard?

Feedback

1. Are there other characteristics unique to video that I’ve missed?

2. Is this the best way to approach this topic? (I accept I need lots more examples in video format). Will this approach to choosing/ using video be helpful for faculty?

3. Any examples of using video for assessment?

4. What do you think of the principles I suggested for selecting video OERs in the activity?  Can traditional university in-house media departments meet this standard in producing OERs, or is it just too expensive to make these kinds of video?

5. Any other suggested references?

References

Bates, A. (1985) Broadcasting in Education: An Evaluation London: Constables (out of print – try a good library)

Bates, A. (2005) Technology, e-Learning and Distance Education London/New York: Routledge

Koumi, J. (2006). Designing video and multimedia for open and flexible learning. London: Routledge.

Mayer, R. E. (2009). Multimedia learning (2nd ed). New York: Cambridge University Press.

 

My five wishes for online learning in 2015

Listen with webReader
Image: © greatinternational students.blogspot.com, 2013

Image: © greatinternational students.blogspot.com, 2013

Predictions, schmedictions. No-one can guess the future but we can at least say what we would like to see. So here are my five wishes for 2015, with a guess at the odds of them happening.

1. Open textbooks.

My wish: faculty will start adopting open textbooks on a large scale in 2015. This is probably the easiest and best way to bring down the cost of education for students.

BC’s open textbook project should be in full swing in 2015, with the top 40 subject topics/disciplines covered with at least one text book per topic by the end of 2015. These topics cover both university and college programs, including apprenticeship and trades training (got to get those pipe fitters and welders  for LNG). All these books will have been peer reviewed by BC faculty.

These open textbooks will of course be available not only to BC institutions but any institution in the world that wants to use them. It will be fascinating to see who actually adopts these books. We could have the ridiculous situation where everyone else BUT BC universities and colleges are using them.

I have to declare an interest here, though. My own open textbook for faculty, teachers and instructors, Teaching in a Digital Age, will also be available. Already I know of at least three institutions already using it as a set book for courses, and it’s only two-thirds finished.

So my prediction:

  • the chance of  every one of the BC open textbooks being used in at least one institution world wide by the end of 2015: 99%
  • the chance of every BC public post-secondary institution using at least one of the open textbooks by 2015: 5%
  • I’ll be happy with at least 50% of Canadian post-secondary institutions using at least one open textbook in 2015. Open textbooks will then start to take off.

2. Open educational resources

My wish: faculty in each province or state will develop agreed province wide curricula for OERs. This may seem an odd wish, but what I see happening, at least in some Canadian provinces, is a huge amount of duplication of OER production, and on the other hand, very little cross-institutional adoption.

Let’s take an example: statistics. This is a subject often taught badly (sorry, where students often have difficulties) that crosses many subject disciplines: math, physics, psychology, sociology, biology, epidemiology, engineering, etc. So what are some institutions doing: developing core modules that can be shared within the institution across departments. So far, so good. But then it stops there.

Now at least in BC we have subject articulation committees that do a good job working out transfer agreements etc. Why not set up articulation committees for OERs? Instead of investing in new OERs in each institution, why not pool resources and either find existing or develop really good new OERs that combined would make up a sensible curriculum in statistics that can be shared by institutions across the system? Get people from stats departments in all the partnering institutions to work on it so they are more likely then to use the OERs themselves. (No, it doesn’t have to be every institution – just those that can work together.) No new money is needed for this as the money would have been spent anyway in developing online materials or courses.

The chances of this happening:

  • in at least one province: 50%

3. A brand new Canadian digital college

My wish: a new ‘green-field’, designed and built from scratch, institution that is conceived around the idea of digitally-based education designed to meet the learning needs of a digital age.

It’s been a long time since we’ve had a really new type of post-secondary institution in Canada: Tech University of BC (died in 2003); Ryerson University (2001); UOIT (2002); Royal Roads University (1995) Any suggestions for the last one?

A lot has happened in the last 20 years. Do we need such fixed battleships as campus-based institutions when what is really needed are fast destroyers? If you can swallow the premise that at least half of all studying within the next five years will be done online, even at the most traditional campus-based institution, what would a new college built around the idea of digital education look like? Emily Carr University of Art and Design should certainly be thinking about this as it moves to new premises in Vancouver in 2017. However, it is focusing on raising huge amounts of money for – yes, a new campus.

Now what if the government said: we will increase your annual operating budget by say 5-10 per cent if you can reduce the capital budget (once off) by 50 per cent? (Some creative accountancy needed here, of course, but hey, this is Canada). Or what if we took a green field site and looked for proposals based on that formula? What would learning spaces look like on such a campus? What would the learning look like? Where and how would students study? What kind of instructors or teachers would be needed? What kind of programs and delivery methods will make sense in 30 to 50 years time? It’s about time we created institutions that will be fit for the 22nd century and they need to be designed from scratch, using what we know today about media, technology and learning.

The chances of this happening (the commitment) in 2015:

  • in Alberta; 30%
  • in BC: 20%
  • in Ontario: 5%

4. A national research and development centre on digital education

My wish: a national research and development centre on digital education

In Canada, the Federal government has no jurisdiction over education: that is a provincial responsibility (and thank goodness for that – we get more innovation and diversity in a decentralised system)). However the Federal government does have responsibility for research and development. Now if you think, like I do, that Canada overall doesn’t do a bad job in developing and applying innovative approaches to teaching and learning (cMOOCs, anyone?), and that the future lies in effective digitally-based learning, it might be a strategic priority to ensure that Canada remains/becomes a world leader in this area.

At the moment though, there is hardly any sustainable research or development centre in online or digital education in this country (with all due respect to CIDER, which does a fantastic job with almost no resources – see what I mean?) Now you can build a hockey arena for $20 million and still  not get an NHL team, so why not put $100 million over five years into a world class research and development centre equivalent to say the Triumf project (particle physics) which got $222 million over five years in 2014.

This would have to be done right, though. No micro-managing from Ottawa, please. Write good terms of reference, hire good people, throw the money over the wall, and review the program after four years. Locate it preferably where innovation is happening (Atlantic Canada – Memorial University would be good – or the West – anywhere west of Kenora).

Here’s what I would like to see in its terms of reference:

  • develop, in conjunction with Stats Canada, an annual national survey of online and other forms of digital learning in post-secondary (and possibly k-12) education, similar to the Babson survey or even better the US Dept of Education IPEDs report
  • set up a joint advisory or governing board that includes representatives from related Canadian industry (e.g. Desire2Learn, Hootesuite), as well experts in online and digital education
  • spend as much on development as on basic research (most of which would be contracted out, following a research and development agenda developed through national, online consultation);
  • set some clear ‘deliverables’, such as regular reliable data and information on new innovations in Canadian digital education, new software or apps that become self-sustainable, testing and guidelines for faculty on emerging technologies, and above all successful, tested and evaluated design models for digital education
  • use the UK JISC as a model in terms of organisation (minimal central organization, networked and outsourced R&D).
  • hire me as Director (no, just kidding – I’m retired – really).

The chances of this happening in 2015:

  • with me as Director: 0.001%
  • without me as Director: 0.002%

5. Online International Students Canada (MOOCs for credit)

My wish: An online university preparation program for international students. This is a very simple idea. Offer free online programs for high school students anywhere in the world. The students with the best grades in the online program get automatic admission to a Canadian university and grants from the Canadian government to come to Canada and study, with half the time in Canada and the rest studying online from their home country. Target: 20,000 students a year. Total cost: $100 million a year (roughly).

There are literally millions of students who would probably qualify for a Canadian university, given the chance, but can’t afford either the education needed to reach the qualifications or the cost of coming to Canada. This program would offer online courses for the equivalent of the last year of high school in Canada, to enable international students to get the grades needed for entry to a Canadian university. The online courses would be offered free, but students would pay a small fee to take the online examinations, most of which would be computer graded.

The main costs in the program would be administrative (marketing, building a web site, finding existing online high school courses, and setting up the examination system), plus the real costs of travel for successful students and living and tuition costs while in Canada.

The advantages of the plan:

  • opens access to at least some low income or poor people in developing country who have access to some form of Internet access
  • simple to administer (the most difficult part will be getting Canadian universities to participate, even though there will be no direct cost)
  • real costs are lowered by students living at least half the time in their own country
  • students are more likely to remain in their home country after graduation and help build their own nation
  • Canadian universities would get some of the best students from developing countries at no or little direct cost
  • possibilities of stronger trading relations with emerging economies as a result.

The program would be funded by Foreign Affairs Canada (the former CIDA branch) and managed by the AUCC.

The chances of this happening in 2015:

  • 10% (well, it is an election year).

And your wishes for 2015?

Let me know what you would like to see in online learning in 2015 – and whether my ideas are as dumb as they look at first glance.

What UBC has learned about doing MOOCs

Listen with webReader

Coursera certificate 2

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

The University of British Columbia, a premier public research university in Canada, successfully delivered five MOOCs in the spring and summer of 2013, using the Coursera platform. This report is an evaluation of the experience.

The report is particularly valuable because it provides details of course development and delivery, including media used and costs. Also UBC has been developing online courses for credit for almost 20 years, so it is interesting to see how this has impacted on the design of their MOOCs.

The MOOCs

1. Game Theory I: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

2. Game Theory II: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

3. Useful Genetics: R. Redfield, UBC

4. Climate Literacy: S. Harris and S. Burch, UBC

5. Introduction to Systematic Program Design: G. Kizcales, UBC

In terms of comparability I’m going to treat Game Theory I and II as one MOOC, as combined they were about the same length as the other MOOCs (between 8-12 weeks)

Basic statistics

330,150 signed up (82,500 on average per course)

164,935 logged in at least once (41,000 per course)

12,031 took final exam (3,000 per course)

8,174 earned course certificate (2,000 per course)

60-70% already had a post-secondary degree

30-40% were North American, with participants from nearly every country in the world.

Course development

None of the instructors had taught an online course before, but were supported by instructional designers, media development staff, and academic assistants (graduate and undergraduate students).

One major difference between UBC MOOCs and its online credit courses (which are primarily LMS-based) was the extensive use of video, the main component of the MOOC pilot courses.

Video production

305 videos constituting a total of 65 hours were produced. Each MOOC used a different method of production:

  • Intensive studio (Climate Literacy)
  • Hybrid studio plus instructor desktop (Systematic Program Design)
  • Light studio production (Game Theory I and II)
  • Instructor desktop (Useful Genetics)

Web pages

All the MOOCs except Games Theory also included weekly modules as HTML-based web pages, which is a variation of the Coursera design default model. Altogether 98 HTML module pages were developed. The weekly modules were used to provide guidance to students on learning goals, amount of work expected, an overview of activities, and additional quiz or assignment help. (All standard practice in UBC’s LMS-based credit courses.)

Assessment

1,049 quiz questions were developed, of which just over half were graded.

There were four peer assessments in total across all the MOOCs.

Course delivery

As well as the faculty member responsible for each MOOC, graduate and undergraduate academic assistants were a crucial component of all courses, with the following responsibilities:

  • directly assisting learners
  • troubleshooting technical problems
  • conducting quality assurance activities

There was very little one-on-one interaction between the main instructor and learners, but academic assistants monitored and moderated the online forum discussions.

Costs

As always, costing is a difficult exercise. Appendix B of the report gives a pilot total of $217,657, but this excludes academic assistance or, perhaps the most significant cost, instructor time.

Working from the video production costs ($95,350) and the proportion of costs (44%) devoted to video production in Figure 1 in the report, I estimate the direct cost at $216,700, or approximately $54,000 per MOOC, excluding faculty time and co-ordination support, but including academic assistance.

However, the range of cost is almost as important. The video production costs for Climate Literacy, which used intensive studio production, were more than six times the video production costs of Systematic Program Design (hybrid studio + desktop).

MOOCs as OERs

  • the UBC instructors are using their MOOC materials in their own on-campus, for-credit classes in a flipped classroom model
  • courses are left open and active on Coursera for self-paced learning
  • porting of video materials as open access YouTube videos
  • two courses (Climate Literacy and Useful Genetics) added Creative Commons licenses for re-use

Challenges

  • copyright clearance (Coursera owns the copyright so third party copyright needs to be cleared)
  • higher than expected time demands on all involved
  • iterative upgrades to the Coursera platform
  • partner relationship management (UBC + Coursera + Stanford University) was time-consuming.
  • training and managing academic assistants, especially time management
  • the Coursera platform limited instructors’ ability to develop desired course activities
  • Coursera’s peer assessment functionality in particular was limiting

Lessons

  • UBC’s prior experience in credit-based online learning led to better-designed, more interactive and more engaging MOOCs
  • learners always responded positively to instructor ‘presence’ in forums or course announcements
  • MOOC students were motivated by grades
  • MOOC students were willing to critically engage in critiquing instructors’ expertise and teaching
  • open publishing via MOOCs is a strong motivator for instructors
  • MOOCs require significant investment.

Conclusion

All the MOOCs received positive feedback and comments from students. UBC was able to gain direct experience in and knowledge of MOOCs and look at how this might inform both their for-credit on-campus and online teaching. UBC was also able to bring its experience in for-credit online learning to strengthening the design of MOOCs. Lastly it was able to make much more widely known the quality of UBC instructors and course materials.

Comment

First, congratulations to UBC for

  • experimenting with MOOCs
  • conducting the evaluation
  • making the report publicly available.

It is clear from the comments of participants in the appendices that at least some of the participants (we don’t know how many) were very pleased with the courses. As usual though with evaluation reports on MOOCs, there is no assessment of learning other than the end of course quiz-based tests. I don’t care too much about completion rates, but some measurement of student satisfaction would have been helpful.

It is also significant that UBC has now decided to move from Coursera to edX as its platform for MOOCs. edX, which is open source and allows partners to modify and adapt the platform, provides the flexibility that Coursera lacked, despite its many iterative ‘improvements’.

This also demonstrates the hubris of MOOC platform developers in ignoring best design principles in online learning when they designed their platforms. It is clear that UBC designers were able to improve the design of their MOOCs by drawing on prior for-credit online experience, but also that the MOOC platforms are still very limited in enabling the kind of learning activities that lead to student engagement and success.

The UBC report also highlighted the importance (and cost) of providing some form of learner support in course delivery. The use of academic assistants in particular clearly made the MOOCs more interactive and engaging, as well as limited but effective interventions from the instructors themselves, once again supported by (and confirming) prior research on the importance of instructor presence for successful for-credit online learning.

I very much appreciate the cost data provided by UBC, and the breakdown of production and delivery costs is extremely valuable, but I have to challenge the idea of providing any costs that exclude the time of the instructors. This is by far the largest and most important cost in MOOCs and the notion that MOOCs are free of instructor cost is to fly in the face of any respectable form of economics.

It is clear that MOOCs are more expensive to date per hour of study time than LMS-based for-credit online courses. We still do not have enough data to give a precise figure, and in any case, as the UBC study shows, cost is very much a factor of design. However, even without instructors costs, the UBC MOOCs at $54,000 each for between 8-12 weeks are already more than the average cost of a 13 week for-credit LMS-based online course, including instructor time.

This is partly due to the increased instructor time in preparation/production, but also to the higher cost of video production.  I am not against the use of video in principle, but it must add value. Using it for content transmission when this can be done so much more cheaply textually and/or by audio is a waste of the medium’s potential (although perhaps more motivating for the instructor).

More importantly, every institution contemplating MOOCs needs to do a cost-benefit exercise. Is it better to invest in MOOCs or credit-based online learning or both? If MOOCs are more expensive, what are the added benefits they provide and does this more than make up for not only the extra cost, but the lost opportunity of investing in (more) credit-based online learning or other forms of campus-based learning? I know what my answer would be.

 

Contact North on Online Learning, Innovation, Flexibility and Open Educational Resources

Listen with webReader

Contact North's humble office in Sudbury, Ontario

Contact North’s humble office in Sudbury, Ontario

Contact North continues to produce a range of interesting short pieces on different aspects of online learning. (Disclaimer: I am a Contact North research associate, and have contributed a few times.)

The April 9 edition of Contact North’s Online Learning News contains three such contributions (all these pieces are generally anonymously written):

The What, Why, Where, and How of Open Educational Resources (OER)

Dr. Rory McGreal, Contact North | Contact Nord Research Associate and the UNESCO/Commonwealth of Learning Chair in Open Educational Resources answers these fundamental questions in a series of 10 short, informative videos, Open Educational Resources (OER) – A Video Primer.

There are two available at the moment, with others coming:

  1. What are open educational resources?
  2. Comparing commercial and open educational resources.

How to Design an Innovative Course

This piece suggests some steps that can help faculty and instructors approach the issue of innovative teaching in a systematic way, including

  • being clear on the problem you are trying to solve
  • working in a team
  • applying technology appropriately to address the problem to be solved
  • evaluating and disseminating your innovation

Greater Flexibility as the New Mantra

I have recently visited a Canadian university developing a major strategy around flexible learning, and this short piece (by someone else) suggests a wide range of ways in which institutions can increase their flexibility, including:

  • course design and delivery options
  • learning recognition and credit granting
  • program completion
  • assessment
  • transition from apprenticeship through diploma to degrees to graduate work .

These and many more items can be found on Contact North’s ‘Ontario Online Learning Portal for Faculty and Instructors’, available both in English and French.

Click here if you wish to subscribe to Contact North’s newsletter.

2020 Vision: Outlook for online learning in 2014 and way beyond

Listen with webReader

 2020 visionTaking the long view

Doug Saunders in the Globe and Mail on  January 4 wrote an interesting piece on prediction, entitled: “Gadgets alone don’t make the future.” Having shown how amazingly accurate technologists in 1961 were in predicting what technologies would roll out in the future, he also showed how poorly they predicted how these gadgets would impact on our lives. In summary:

‘We are very good at guessing where our inventions might lead. We are very poor in understanding how humans might change their lives….the decision of what kind of life to live between the screens remains a political one, shaped not by our inventions but by our own decisions.’

Last year I spent some time discussing the value of predictions. One point I didn’t mention is the limitation of predicting just one year ahead, because you can’t identify the long term directions, and so often you’re driven by what happened in the very recent past, i.e. last year, because that’s the latest and often only data you have. More importantly, though, looking one year ahead assumes that there is no choice in what technologies we will use and how we will use them, because they are already entering our society. Also, this is likely to be the last year in which I make predictions for the future. I will be 75 in April, and I plan to stop all paid professional activities at that point (although I will keep my blog, but more as a journalist than as a practitioner).

So this seems to be a good point to look not just at 2014, but where we might be going five to ten years from now, and in doing this, I want to include choice or human decision-making as well as technological determinism. In other words, what kind of online learning do I expect in the future, given what I know so far?

The disappearance of online learning as a separate construct

In 2020, people won’t be talking about online learning as such. It will be so integrated with teaching and learning that it will be like talking today about whether we should use classrooms. In fact, we may be talking much more about classrooms or the campus experience in 2020, because of online learning, and how it is changing the whole way that students are learning. There is likely to be heated discussions about the role and purpose of campuses and school buildings, the design of classrooms, and who needs to be there (teachers and students) and more importantly what for, when students can do so much of their learning online – and generally prefer to, because of the flexibility, and of their control over their own learning. The big changes then are likely to be on-campus, rather than on-line.

Steelcase Node Classroom

Steelcase Node Classroom

Multi-mode delivery concentrated in fewer institutions – but more diversity

Quite a few public and smaller private post-secondary institutions will be gone or radically transformed by 2020. Particularly at risk are smaller, low status state or provincial universities and colleges or their campuses in metropolitan areas, where there is local and regional competition for students. They will have lost students to more prestigious universities and high status vocationally oriented institutions using online and flexible learning to boost their numbers. Government will be increasingly reluctant to build new campuses, looking to more flexible and more cost effective online delivery options to accommodate increasing demand. Nevertheless, politics will occasionally trump economics, with small new universities and colleges still being created in smaller towns away from the larger urban areas. Even these though will have much smaller campuses than today and probably as much as 50% of all course enrollments online, often in partnership with more established and prestigious universities through course sharing and credit transfer.

Those institutions that have survived will be offering students a range of choices of how they can access learning. Courses or programs will be deliberately designed to accommodate flexibility of access. Thus students will be able to decide whether to do all their studying on campus, all of it online, or a mix of both, although courses or programs are likely to have a common assessment strategy (see below). This will not be driven so much by academic or even political decisions, but by students voting with their feet (or mouses) to study at those institutions that provide such flexibility.

Multi-purpose, open delivery, with multiple levels of service and fees

Content will be multi-purposed, depending on a learner’s goals. Thus the same content can be part of a credit-based degree-level course, program or competency, part of a non-credit certificate or diploma, or available as open access. Learners will also be able to choose from a range of different course or program components, dependent on their needs and interests. Because most content will be open and modular, in the form of open textbooks, open multimedia resources, and open research, institutions will offer a variety of templates for courses and programs built around open content. For example, for a degree in physics, certain topics must be covered, with a strong recommendation for the sequence of study, but within those core levels of competency, there will be a variety of routes or electives towards a final degree, where broadly based learning outcomes are set, but multiple routes are offered for progress to these outcomes. Those content components can be accessed from a wide range of approved sources. It is the competency and academic performance of the learner that the institution will accredit.

Most institutions will have an open education portal, that contains not only a wide range of open educational resources, but also a range of open services, such as program templates or free academic guidance for specific target groups, as part of their enrollment strategy. Although such portals are likely to include materials from a wide range of sources from around the world, special emphasis will be given to open content developed by their own faculty, based on their latest research or scholarship, as a way of branding their institution. iTunesU, MIT’s Opencourseware, OpenLearn, and MOOCs are early prototypes, but content quality in the future will be greatly improved in terms of pedagogical and media design to accommodate online learners. Also states and provinces will also establish system-wide portals of open educational resources, particularly at the k-12 and two year college level (see eLearnPunjab and open.bccampus.ca as prototype models).

Because academic content is almost all open, free and easily accessible over the Internet, students will not pay tuition fees for content delivery, but for services such as academic guidance and learning support, and these fees will vary depending on the level of service required. Thus students who want a traditional course that covers guidance on and access to content, tutorial help, access to campus facilities, feedback and assessment will pay full fee (some of which may still be government subsidized in the public system). Students who want just open access will pay nothing, but will get few if any support services, and if they need a formal assessment, they will need to pay for this (although again this may be subsidized in a public system). Other students may want feedback and some form of continuous assessment, but will not want to pay for full tutorial support.

There are several consequences of this increased flexibility. Some institutions will specialize in small-class, on-campus education at high cost. Others will focus on high quality delivery through a variety of delivery modes, with a particular emphasis on course design and learner support. Some institutions will focus on low cost, competency-based open access programs, supported by businesses requiring specific skilled labour, and a few institutions will be specialists in fully online distance delivery operating on a national or international basis, at a lower cost but equally high quality as campus-based institutions. The majority of institutions though will become multi-purpose, multiple delivery institutions because of the economies of scale and scope possible.

Goodbye to the lecture-based course

In most institutions, courses based on three lectures a week over 13 weeks will have disappeared. There are several reasons for this. The first is that all content can be easily digitalized and made available on demand at very low cost. Second, institutions will be making greater use of dynamic video (not talking heads) for demonstration, simulations, animations, etc. Thus most content modules will be multi-media. Third, open textbooks incorporating multi media components and student activities will provide the content, organization and interpretation that are the rationale for most lectures. Lastly, and most significantly, the priority for teaching will have changed from information transmission and organization to knowledge management, where students have the responsibility for finding, analyzing, evaluating, sharing and applying knowledge, under the direction of a skilled subject expert. Project-based learning, collaborative learning and situated or experiential learning will become much more widely prevalent. Also many instructors will prefer to use the time they would have spent on a series of  lectures in providing more direct, individual and group learner support, thus bringing them into closer contact with learners.

This does not mean that lectures will disappear altogether, but they will be special events, and probably multi-media, synchronously and asynchronously delivered. Special events might include a professor’s summary of his latest research, the introduction to a course, a point mid-way through a course for taking stock and dealing with common difficulties, or the wrap-up to a course. It will provide a chance for an instructor to makes themselves known, to impart their interests and enthusiasm, and to motivate learners, but this will be just one, relatively small, but important component of a much broader learning experience for students.

61730023

Goodbye to the written exam – and welcome to the final implementation of lifelong learning

For most post-secondary qualifications, written exams will have been replaced by assessment through multimedia portfolios of student work. These will show not only students’ current knowledge and competencies, but also their progression over time, and a range of equally important skills, such as their ability to work collaboratively, self-management of learning, and general communication skills. Assessment will be mainly on a continuous, on-going basis.

As well as change in the method of assessing learning there will be greater variety in the range of accredited qualifications. Degrees, certificates and diplomas will still be important, but these will be complemented with a wide range of assessments of informal or non-formal learning, such as badges, some offered by post-secondary institutions, others offered by employers’ organizations or co-operatives of professionals. University and college diplomas and degrees will increasingly be seen as milestones on the journey to lifelong learning, and for demographic and economic reasons, the lifelong learning market will become a much larger market than the high school leaver market.

This means academic departments will need to develop programs and courses that range from introductory or foundational through undergraduate degrees to professional masters to lifelong learning, again using similar content modules adapted to different markets, as well as creating or adapting new content, based on the latest research in a field, for these newer markets. Much of the lifelong market will lend itself to online and hybrid learning, but in different structures (short modules, for instance) than the undergraduate and higher degree market. Universities and colleges will increasingly compete with the corporate training industry for these post-postgraduate learners, who will be able and willing to afford top dollar for top-level lifelong learning opportunities, based on the latest research coming out of universities, government and businesses.

However, a large part of the lifelong learning market will become occupied by communities of practice and self-learning, through collaborative learning, sharing of knowledge and experience, and crowd-sourcing new ideas and development, particularly assisted by an evolution of what are now known as cMOOCs. Such informal learning provision will be particularly valuable for non-governmental or charitable organizations, such as the Red Cross, Greenpeace or UNICEF, or local government, looking for ways to engage communities in their areas of operation. These communities of learners will be open and free, and hence will provide a competitive alternative to the high priced lifelong learning programs being offered by research universities. This will put pressure on universities and colleges to provide more flexible arrangements for recognition of informal learning, in order to hold on to their current monopoly of post-secondary accreditation.

Image: © Etienne Wenger, 2010

Image: © Etienne Wenger, 2010

New financial models

Because most content will be freely accessible, and because students will pay incrementally for a wide variety of services, new financial models will need to be developed, to support the flexibility and range of services that students will increasingly demand and require. The biggest move is likely to be away from block funding or enrollment-driven funding by government towards pay-for-service through student fees for teaching. There will be further separation of the funding for research and teaching (this has already happened in some countries, such as in England and Wales.) As a result government financing may well change, so that students are given a post-secondary grant at the age of 17, and have the right to decide how to spend that grant on post-secondary education, rather than funding institutions directly for teaching.

This may have some unexpected benefits for academic departments. Under this model it makes much more sense to fund programs directly from fees for the program, than to pool grants and fees centrally then break out money for teaching and filter it down through the departments. Thus program fees or service fees  would come to academic departments (or more accurately the program areas) directly, then the programs would pay for university services such as registration and financial services on a direct cost basis, plus a percentage for general overheads. This is already happening in some public universities at post-graduate levels, where tuition fees for online professional masters more than cover all the costs, direct and indirect, of a program, including the cost of full-time research professors who teach on the program.

This model would also have two other benefits. It would put pressure on service departments, such as HR, financial services, the Registry, etc., to become more cost-efficient, because direct costs to programs become more transparent. Second, since online students do not need a range of campus services such as campus building maintenance, lighting, and heating, it would lead to the different costs of online vs campus-teaching becoming more transparent and comparable, with an economic incentive to move more towards the most cost-efficient delivery model.

There are also disadvantages. Some model would be needed to support more expensive programs to deliver, or programs that are specialized but important in a university community. However, a program-based financial model may help save small departments who are struggling for minimal enrolments from their local market. Online courses can open the market to regional or international students and offer the chance of collaboration and partnership with other institutions, through course and student sharing.

The disaggregation of institutional activities required for the flexible delivery of programs in a world where content is free offers opportunities for rethinking how teaching and learning is funded.

Systematic faculty development and training

Since content will be freely accessible, institutions’ reputation and branding will increasingly depend on the way they support learners. This will put much greater emphasis on instructors having good teaching skills as well as subject expertise. Thus most universities and colleges will require faculty to have assessed teaching skills before tenure or permanent appointment, and equal attention will be given to teaching expertise as research in promotion. This will mean incorporating teaching practice and methods within most post-graduate subject areas, college instructors having compulsory pre-service teacher training, and regular faculty having systematic ongoing professional development as new technologies and new teaching approaches develop over time. The immediate benefit of this will be better student retention rates and higher quality learning outcomes.

Devolved decision-making and organizational models

A move to program-based funding, the need for effective course designs to attract students, the differentiation of services, the increased professionalism in teaching, and freely available open content will result in a move to systematic program planning and team teaching. A typical team will consist of a senior research professor, several junior or adjunct professors, an instructional designer/project manager and a media/web designer. The senior faculty member, in collaboration with the other team members, will be responsible for decisions about curriculum content, methods of learner support, and assessment standards. The team will develop assessment criteria and rubrics, and where necessary hire additional instructors for learner support and marking of assessments , under the supervision of the senior faculty members.

One consequence will be the disappearance of central centres for teaching and technology, except in small institutions. Instructional design staff will be located in program areas and will be responsible with academic faculty for faculty development activities, as well as with overall course design input. There will be increased demand for media designers, while instructional designers will be in less demand in the future, but still necessary to support faculty, especially as new learning technologies develop.

Student privacy, data security and student online behaviour will become more difficult

Learning will increasingly be delivered through student-owned devices, and learners will increasingly integrate social life, work and study in a seamless manner. Services will increasingly be delivered through the cloud. Security agencies, Internet-based companies and knowledge-based companies will constantly be seeking access to student data, especially student learning performance and online behaviour, as this information will be increasingly valuable for state security and commercial reasons. As a result it will become increasingly difficult for institutions to protect student data and their privacy. This may turn out to be the biggest challenge for students, institutions, and government in the next 20 years and could seriously inhibit the development of online learning in the future, if students or faculty lose trust in the system.

The future is about choices

This is my view about where we could be going with online learning in the next five to ten years. However, I will not be making the decisions, as I am retiring in April. If you do not like this vision, then you are in a position to influence a different kind of vision. Although as McLuhan says, we are shaped by our devices, we also shape the world around these devices. The worst thing we could do is to leave it to computer scientists to decide our future.

The value such a vision lies not in its detail, but in identifying some of the key choices or decisions that will need to be made. So here are the decisions that are thrown up by this vision for the future, for students, faculty, institutions and government (and some of these, such as those about campus facilities, should be being made right now):

Students and learners

  • at this point in my life, what are my learning goals? What is the best way to meet these? Where can I get advice for this?
  • do I need a qualification and if so, what kind?
  • what is the best way for me to access this learning? On-campus; online; or a mix of both?
  • what kind of learning support do I need?
  • how much do I want to – or must I – pay for these services?
  • what institution or other method of delivery will provide what I want? Where can I get independent advice on this?
  • how can I protect my privacy when I am online studying?

Faculty and instructors

  • why do students need to come to campus? What am I offering on-campus that they couldn’t get online? Have I looked up the research on this?
  • what teaching methods will lead to the kind of learning outcomes that students will need in life?
  • what should be my role if content is freely available online?
  • what kind of teaching spaces do I need for what I want to offer on campus?
  • how should I best use my time in teaching? In what kind of teaching activities can I really make a difference for students?
  • if I create new or original content for my teaching, should I make it openly available to anyone to use?
  • what methods of assessment should I use in a digital age? How do I assess prior or informal learning?
  • what kind of courses or programs should we be offering for lifelong learners?
  • what do I need to know about student data, and the protection of student privacy?
  • what training or professional development do I need to ensure that I can meet the learning needs of my students?

Institutions

  • what kind of campus will we need in 10 years time?
  • what proportion of course enrollments are likely to be accessed off-campus?
  • what will be the best way to accommodate more students – online learning or more buildings?
  • what kind and number of teaching spaces will we need?
  • what partnerships or strategies should we adopt to protect our enrollment base?
  • what are our strategies and policies regarding open educational resources?
  • what is our strategy for lifelong learning?
  • what financial models should we put in place to encourage innovation in teaching and to attract students?
  • how do we ensure that faculty have the skills necessary for teaching in a digital age?
  • how can we best reward innovation and high quality teaching?
  • what kind of organization and staff do we need to support faculty in their teaching?
  • how do we best protect student data and privacy (as well as our staff’s) in a digital age?

Government

  • what kind of post-secondary system, in terms of institutional differentiation, program delivery and innovations in teaching, do we need in a digital age?
  • how many, and what kind of, campuses do we need when students are also studying online? What is the best way to accommodate expansion in the system?
  • how can we best support system-wide open education, to reduce costs and increase quality?
  • how should we fund post-secondary education in a digital age? How much and what should ‘first-time’ students pay for themselves? What should lifelong learners who have already been through the system pay? What funding models would encourage innovation in teaching and help improve quality?
  • how can online learning help to increase the productivity of the post-secondary educational system? What can we do to encourage this?
  • what does government need to do to protect student data and student privacy?

What’s YOUR vision?

I won’t be around to make or influence these decisions, but most of you will. Are there decisions I’ve missed? What decisions would you make? What’s your vision for the future?

If you are willing to share just one response to any of these questions or decisions, this will be very much appreciated. Because the future will be increasingly about sharing knowledge.