October 4, 2015

MIT and German research on the [appalling] use of video in xMOOCs

Listen with webReader
Demonstration is one of the 18 video production styles from a Coursera course “Mechanics: Motion, Forces, Energy and Gravity, from Particles to Planets” (UNSW Australia)

Demonstration is one of the 18 video production styles from a Coursera course “Mechanics: Motion,
Forces, Energy and Gravity, from Particles to Planets” (UNSW Australia)

Hansch, A. et al. (2015) Video and Online Learning: Critical Reflections and Findings From the Field Berlin DE: Alexander von Humbolt Institut für Internet und Gesellschaft

The study

This exploratory study examines video as an instructional medium and investigates the following research questions:

  • How is video designed, produced, and used in online learning contexts, specifically with regard to pedagogy and cost?
  • What are the benefits and limitations of standardizing the video production process?

Findings are based on a literature review, our observation of online courses, and the results of 12 semi-structured interviews with practitioners in the field of educational video production

We reviewed a variety of different course and video formats offered on six major platforms: Coursera, edX, Udacity, iversity, FutureLearn, and Khan Academy.


(My summary, the authors’ words in italics)

1. We found documentation on the use of video as an instructional tool for online learning to be a notably underexplored field. To date, little consideration has been given to the pedagogical affordances of video, what constitutes an effective learning video, and what learning situations the medium of video is best suited for.

2. On the whole, we found that video is the main method of content delivery in nearly all MOOCs. MOOC videos tend to be structured as short pieces of content, often separated by assessment questions. This seems to be one of the few best practices that is widely accepted within the field.

3. We found two video production styles that are most commonly used: (1) the talking head style, where the instructor is recorded lecturing into the camera, and (2) the tablet capture with voiceover style (e.g. Khan Academy style).

4. It appears that the use of video in online learning is taken for granted, and there is often not enough consideration given to whether or not video is the right medium to accomplish a MOOC’s pedagogical goals.

5. Video tends to be the most expensive part of MOOC production. There is a tendency for institutions to opt for a professional, studio-style setup when producing video… but.. there is little to no research showing the relevance of production value for learning.

6. More research is needed on how people learn from video.


1. Think twice before using video….it seems problematic that online learning pedagogy is concentrated so heavily in this medium. Hence, we want to discourage the use of video in online learning simply because there is an expectation for it, and rather encourage online learning producers and providers to question video’s extensive use at the expense of other pedagogical alternatives

2. Make the best use of video as a medium…Based on our findings, we have compiled an overview of the medium of video’s affordances for online learning. [Nine ‘affordances’ of video are recommended]


First, this is not really about video in online learning, but video in xMOOCs, which is just one, fairly esoteric use of video in online learning. Nevertheless, since xMOOCs are in widespread use, it is still a valid and important area of research.

Unfortunately, though, the authors’ literature search was barely adequate. I will forgive the failure to discuss the 20 years of research on television and video at the UK Open University, or the research done on the educational effects of television from Sesame Street, but although the authors of this paper include a reference to his book in the bibliography, the failure in the main text to recognise properly Richard Mayer’s contribution to what we know about using video for teaching and learning is unforgivable, as is the authors’ conclusion that the use of video as an instructional tool for online learning is a notably underexplored field. Sorry, but its the authors who haven’t looked in the right places.

Secondly, it’s not that I disagree with their recommendations, it’s that what they are recommending has been known for a long time. More research is always useful, but first the existing research needs to be read, learned and applied.

Thirdly, this paper reinforces what many of us with experience in online learning and/or in the use of video in education have known all along: those designing xMOOCs have made the most egregious of errors in effective design through sheer ignorance of prior research in the area. Since those making these stupid mistakes in course design come from elite, research-based institutions, the sin of ignoring prior research is even more unforgivable. Once gain we have MIT, Stanford and Harvard and the other xMOOC providers having to use new research to rediscover the wheel through ignorance and arrogance.

Fourthly, the real value of this paper comes from the authors’ typology of video production styles. They offer a total of 18 possible production styles, with a short description and a set of questions to be asked about each. This alone makes the paper worth reading for anyone considering using video in online learning, although the authors fail to point out which of the production styles should be avoided, and which used, according to the research.

Lastly, what this paper really reinforces above all is that we should stop taking xMOOCs seriously. They are badly designed by amateurs who don’t know what they are doing. Let’s move on to more important issues in online learning.


Seeking the unique pedagogical characteristics of video

Listen with webReader

Figure 9. The Open University on iTunesU

Figure 9. The Open University on iTunesU

This is the third post on the unique characteristics of different media, for my open textbook, Teaching in a Digital Age.

Although it will be seen that there are good pedagogical reasons for using video, it presents much more of a challenge to faculty than the use of text or audio. Producing video that exploits the unique characteristics of video is not something that most faculty have the time or ability to do themselves, and adds substantial cost to a course.

The alternative of course is video available as an open educational resources, and good luck with that. I had great difficulty in finding suitable open educational resources to use as examples (although there are talking heads in abundance). If anything, the availability of good quality video OERs has declined recently, with much of the material previously available through Open Learn and other sources such as iTunesU and even YouTube now removed. Copyright of good quality educational video is still pretty restricted, probably because of the high cost of producing it.

Reliability of OERs is becoming a critically important issue. If an instructor cannot rely on an OER being available in a year or two after incorporation into their teaching, OERs won’t get used. Maybe this is after all a good reason for learning object repositories.

Ideally, I would like to be able to link each one of these unique features to an open source video example. After two days trawling, I’ve come up with one (thank you, University of Nottingham, and Clint Lalonde for suggesting it!) So any suggestions for ‘open’ videos that provide examples for each of the characteristics below would be really appreciated. (Yes, I know I should ask a librarian, but I’m working on my own these days).

More power, more complexity

Although there have been massive changes in video technology over the last 25 years, resulting in dramatic reductions in the costs of both creating and distributing video, the unique educational characteristics are largely unaffected. (More recent computer-generated media such as simulations, will be analysed under ‘Computing’, in Section 9.5.4).

Video is a much richer medium than either text or audio, as in addition to its ability to offer text and sound, it can also offer dynamic or moving pictures. Thus while it can offer all the affordances of audio, and some of text, it also has unique pedagogical characteristics of its own. Once again, there has been considerable research on the use of video in education, and again I will be drawing on research from the Open University (Bates, 1985 2005; Koumi, 2006) as well as from Mayer (2009).

Presentational features

Video can be used to:

  • demonstrate experiments or experimental situations, particularly:
  • illustrate principles involving dynamic change or movement
  • illustrate abstract principles through the use of specially constructed physical models
  • illustrate principles involving three-dimensional space
  • demonstrate changes over time through the use of animation, slow-motion, or speeded-up video
  • substitute for a field visit, by:
    • providing students with an accurate, comprehensive visual picture of a site, in order to place the topic under study in context
    • demonstrating the relationship between different elements of a system under study (e.g. production processes, ecological balance)
    • by identifying and distinguishing between different classes or categories of phenomena at the site (e.g. in forest ecology)
    • to observe differences in scale and process between laboratory and mass-production techniques
    • through the use of models, animations or simulations, to teach certain advanced scientific or technological concepts (such as theories of relativity or quantum physics) without students having to master highly advanced mathematical techniques,
  • bring students primary resource or case-study material, i.e. recording of naturally occurring events which, through editing and selection, demonstrate or illustrate principles covered elsewhere in a course
  • demonstrate ways in which abstract principles or concepts developed elsewhere in the course have been applied to real-world problems
  • synthesise a wide range of variables into a single recorded event, e.g. to suggest how real world problems can be resolved
  • demonstrate decision-making processes or decisions ‘in action’ (e.g. triage in an emergency situation) by:
    • recording the decision-making process as it occurs in real contexts
    • recording ‘staged’ simulations, dramatisation or role-playing
  • demonstrate correct procedures in using tools or equipment (including safety procedures)
  • demonstrate methods or techniques of performance (e.g. mechanical skills such as stripping and re-assembling a carburetor, sketching, drawing or painting techniques, or dance)
  • record and archive events that are crucial to topics in a course, but which may disappear or be destroyed in the near future, such as, for instance, street graffiti or condemned buildings
  • demonstrate practical activities to be carried out by students, on their own.

Skills development

This usually requires the video to be integrated with student activities. The ability to stop, rewind and replay video becomes crucial for skills development, as student activity usually takes place separately from the actual viewing of the video. This may mean thinking through carefully activities for students related to the use of video.

If video is not used directly for lecturing, research clearly indicates that students generally need to be guided as to what to look for in video, at least initially in their use of video for learning. There are various techniques for relating concrete events with abstract principles, such as through audio narration, using a still frame to highlight the observation, or repeating a small section of the program. Bates and Gallagher (1977) found that using video for developing higher order analysis or evaluation was a teachable skill that needs to be built into the development of a course or program, to get the best results.

Typical uses of video for skills development include:

  • enabling students to recognize naturally occurring phenomena or classifications (e.g. teaching strategies, symptoms of mental illness, classroom behaviour) in context
  • enabling students to analyse a situation, using principles either introduced in the video recording or covered elsewhere in the course, such as a textbook or lecture
  • interpreting artistic performance (e.g. drama, spoken poetry, movies, paintings, sculpture, or other works of art)
  • analysis of music composition, through the use of musical performance, narration and graphics
  • testing the applicability or relevance of abstract concepts or generalisations in real world contexts
  • looking for alternative explanations for real world phenomena.

Strengths and weaknesses of video as a teaching medium

One factor that makes video powerful for learning is its ability to show the relationship between concrete examples and abstract principles, with usually the sound track relating the abstract principles to concrete events shown in the video. Video is particularly useful for recording events or situations where it would be too difficult, dangerous, expensive or impractical to bring students to such events.

Thus its main strengths are as follows:

  • linking concrete events and phenomena to abstract principles and vice versa
  • the ability of students to stop and start, so they can integrate activities with video
  • provides alternative approaches that can help students having difficulties in learning abstract concepts
  • adds substantial interest to a course by linking it to real world issues
  • a growing amount of freely available, high quality academic videos
  • good for developing some of the higher level intellectual skills and some of the more practical skills needed in a digital age
  • the use of low cost cameras and free editing software enables some forms of video to be cheaply produced.

The main weaknesses of video are:

  • many faculty have no knowledge or experience in using video other than for recording lecturing
  • there is currently a very limited amount of high quality educational video free for downloading, because the cost of developing high quality educational video that exploits the unique characteristics of the medium is still relatively high. Links also often go dead after a while, affecting the reliability of outsourced video. The availability of free material for educational use will improve over time, but currently finding appropriate and free videos that meet the specific needs of a teacher or instructor can be time-consuming or such material may just not be available or reliable
  • creating original material that exploits the unique characteristics of video is time-consuming, and still relatively expensive, because it usually needs professional video production
  • to get the most out of educational video, students need specially designed activities that sit outside the video itself
  • students often reject videos that require them to do analysis or interpretation; they often prefer direct instruction that focuses primarily on comprehension. Such students need to be trained to use video differently, which requires time to be devoted to developing such skills.

For these reasons, video is not being used enough education. When used it is often an afterthought or an ‘extra’, rather than an integral part of the design, or is used merely to replicate a classroom lecture, rather than exploiting the unique characteristics of video.


If video is being used to develop the skills outlined in Section, then it is essential that these skills are assessed and count for grading. Indeed, one possible means of assessment might be to ask students to analyse or interpret a selected video, or even to develop their own media project, using video they themselves have collected or produced, using their own devices.

Activity 9.4

1. Take one of the courses you are teaching. What key presentational aspects of video could be important for this course?

2. Look at the skills listed in Section 1.3 of this book. Which of these skills would best be developed through the use of video rather than other media? How would you do this using video-based teaching?

3. Under what conditions would it be more appropriate for students to be assessed by asking them to analyse or make their own video recording? How could this be done under assessment conditions?

4. Type in the name of your topic + video into Google.

  • How many videos come up?
  • What’s their quality like?
  • Could you use any of them in your teaching?
  • If so, how would you integrate them into your course?
  • Could you make a better video on the topic?
  • What would enable you to do this?

Here are some criteria I would apply to what you find:

  • it is relevant to what you want to teach
  • it demonstrates clearly a particular topic or subject and links it to what the student is intended to learn
  • it is short and to the point
  • the example is well produced (clear camera work, good presenter, clear audio)
  • it provides something that I could not do easily myself
  • it is freely available for non-commercial use

I have to say that most of the examples I found on the Internet do NOT meet all of these criteria! The videos I have linked to in this section do, but then some are produced for the Open University. Can traditional university in-house media departments meet this standard?


1. Are there other characteristics unique to video that I’ve missed?

2. Is this the best way to approach this topic? (I accept I need lots more examples in video format). Will this approach to choosing/ using video be helpful for faculty?

3. Any examples of using video for assessment?

4. What do you think of the principles I suggested for selecting video OERs in the activity?  Can traditional university in-house media departments meet this standard in producing OERs, or is it just too expensive to make these kinds of video?

5. Any other suggested references?


Bates, A. (1985) Broadcasting in Education: An Evaluation London: Constables (out of print – try a good library)

Bates, A. (2005) Technology, e-Learning and Distance Education London/New York: Routledge

Koumi, J. (2006). Designing video and multimedia for open and flexible learning. London: Routledge.

Mayer, R. E. (2009). Multimedia learning (2nd ed). New York: Cambridge University Press.


What UBC has learned about doing MOOCs

Listen with webReader

Coursera certificate 2

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

The University of British Columbia, a premier public research university in Canada, successfully delivered five MOOCs in the spring and summer of 2013, using the Coursera platform. This report is an evaluation of the experience.

The report is particularly valuable because it provides details of course development and delivery, including media used and costs. Also UBC has been developing online courses for credit for almost 20 years, so it is interesting to see how this has impacted on the design of their MOOCs.


1. Game Theory I: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

2. Game Theory II: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

3. Useful Genetics: R. Redfield, UBC

4. Climate Literacy: S. Harris and S. Burch, UBC

5. Introduction to Systematic Program Design: G. Kizcales, UBC

In terms of comparability I’m going to treat Game Theory I and II as one MOOC, as combined they were about the same length as the other MOOCs (between 8-12 weeks)

Basic statistics

330,150 signed up (82,500 on average per course)

164,935 logged in at least once (41,000 per course)

12,031 took final exam (3,000 per course)

8,174 earned course certificate (2,000 per course)

60-70% already had a post-secondary degree

30-40% were North American, with participants from nearly every country in the world.

Course development

None of the instructors had taught an online course before, but were supported by instructional designers, media development staff, and academic assistants (graduate and undergraduate students).

One major difference between UBC MOOCs and its online credit courses (which are primarily LMS-based) was the extensive use of video, the main component of the MOOC pilot courses.

Video production

305 videos constituting a total of 65 hours were produced. Each MOOC used a different method of production:

  • Intensive studio (Climate Literacy)
  • Hybrid studio plus instructor desktop (Systematic Program Design)
  • Light studio production (Game Theory I and II)
  • Instructor desktop (Useful Genetics)

Web pages

All the MOOCs except Games Theory also included weekly modules as HTML-based web pages, which is a variation of the Coursera design default model. Altogether 98 HTML module pages were developed. The weekly modules were used to provide guidance to students on learning goals, amount of work expected, an overview of activities, and additional quiz or assignment help. (All standard practice in UBC’s LMS-based credit courses.)


1,049 quiz questions were developed, of which just over half were graded.

There were four peer assessments in total across all the MOOCs.

Course delivery

As well as the faculty member responsible for each MOOC, graduate and undergraduate academic assistants were a crucial component of all courses, with the following responsibilities:

  • directly assisting learners
  • troubleshooting technical problems
  • conducting quality assurance activities

There was very little one-on-one interaction between the main instructor and learners, but academic assistants monitored and moderated the online forum discussions.


As always, costing is a difficult exercise. Appendix B of the report gives a pilot total of $217,657, but this excludes academic assistance or, perhaps the most significant cost, instructor time.

Working from the video production costs ($95,350) and the proportion of costs (44%) devoted to video production in Figure 1 in the report, I estimate the direct cost at $216,700, or approximately $54,000 per MOOC, excluding faculty time and co-ordination support, but including academic assistance.

However, the range of cost is almost as important. The video production costs for Climate Literacy, which used intensive studio production, were more than six times the video production costs of Systematic Program Design (hybrid studio + desktop).


  • the UBC instructors are using their MOOC materials in their own on-campus, for-credit classes in a flipped classroom model
  • courses are left open and active on Coursera for self-paced learning
  • porting of video materials as open access YouTube videos
  • two courses (Climate Literacy and Useful Genetics) added Creative Commons licenses for re-use


  • copyright clearance (Coursera owns the copyright so third party copyright needs to be cleared)
  • higher than expected time demands on all involved
  • iterative upgrades to the Coursera platform
  • partner relationship management (UBC + Coursera + Stanford University) was time-consuming.
  • training and managing academic assistants, especially time management
  • the Coursera platform limited instructors’ ability to develop desired course activities
  • Coursera’s peer assessment functionality in particular was limiting


  • UBC’s prior experience in credit-based online learning led to better-designed, more interactive and more engaging MOOCs
  • learners always responded positively to instructor ‘presence’ in forums or course announcements
  • MOOC students were motivated by grades
  • MOOC students were willing to critically engage in critiquing instructors’ expertise and teaching
  • open publishing via MOOCs is a strong motivator for instructors
  • MOOCs require significant investment.


All the MOOCs received positive feedback and comments from students. UBC was able to gain direct experience in and knowledge of MOOCs and look at how this might inform both their for-credit on-campus and online teaching. UBC was also able to bring its experience in for-credit online learning to strengthening the design of MOOCs. Lastly it was able to make much more widely known the quality of UBC instructors and course materials.


First, congratulations to UBC for

  • experimenting with MOOCs
  • conducting the evaluation
  • making the report publicly available.

It is clear from the comments of participants in the appendices that at least some of the participants (we don’t know how many) were very pleased with the courses. As usual though with evaluation reports on MOOCs, there is no assessment of learning other than the end of course quiz-based tests. I don’t care too much about completion rates, but some measurement of student satisfaction would have been helpful.

It is also significant that UBC has now decided to move from Coursera to edX as its platform for MOOCs. edX, which is open source and allows partners to modify and adapt the platform, provides the flexibility that Coursera lacked, despite its many iterative ‘improvements’.

This also demonstrates the hubris of MOOC platform developers in ignoring best design principles in online learning when they designed their platforms. It is clear that UBC designers were able to improve the design of their MOOCs by drawing on prior for-credit online experience, but also that the MOOC platforms are still very limited in enabling the kind of learning activities that lead to student engagement and success.

The UBC report also highlighted the importance (and cost) of providing some form of learner support in course delivery. The use of academic assistants in particular clearly made the MOOCs more interactive and engaging, as well as limited but effective interventions from the instructors themselves, once again supported by (and confirming) prior research on the importance of instructor presence for successful for-credit online learning.

I very much appreciate the cost data provided by UBC, and the breakdown of production and delivery costs is extremely valuable, but I have to challenge the idea of providing any costs that exclude the time of the instructors. This is by far the largest and most important cost in MOOCs and the notion that MOOCs are free of instructor cost is to fly in the face of any respectable form of economics.

It is clear that MOOCs are more expensive to date per hour of study time than LMS-based for-credit online courses. We still do not have enough data to give a precise figure, and in any case, as the UBC study shows, cost is very much a factor of design. However, even without instructors costs, the UBC MOOCs at $54,000 each for between 8-12 weeks are already more than the average cost of a 13 week for-credit LMS-based online course, including instructor time.

This is partly due to the increased instructor time in preparation/production, but also to the higher cost of video production.  I am not against the use of video in principle, but it must add value. Using it for content transmission when this can be done so much more cheaply textually and/or by audio is a waste of the medium’s potential (although perhaps more motivating for the instructor).

More importantly, every institution contemplating MOOCs needs to do a cost-benefit exercise. Is it better to invest in MOOCs or credit-based online learning or both? If MOOCs are more expensive, what are the added benefits they provide and does this more than make up for not only the extra cost, but the lost opportunity of investing in (more) credit-based online learning or other forms of campus-based learning? I know what my answer would be.


MIT, learning technologies, and developing countries: lessons in technology transfer

Listen with webReader


This week I spent three days at the MIT LINC (Learning International Networks Consortium) conference in Boston/Cambridge, Massachusetts, with the theme: ‘Realizing the Dream: Education Becoming Available to All. Will the World take Advantage?’.

Because there is so much information that I would like to share, I am dividing this into two posts. This post will focus mainly on the activities reported from around the world, although many of these projects are related to or supported by MIT faculty and staff volunteers.

My second post, MOOCs, MIT and Magic, will focus on what MIT is doing to support technology-enabled learning, mainly at home.

But first some words about the conference.


The Learning International Networks Consortium (LINC) is an MIT-managed international initiative that began in 2001 and is operated by a growing team of MIT faculty, student and staff volunteers. 

The mission of the LINC project is: With today’s computer and telecommunications technologies, every young person can have a quality education regardless of his or her place of birth or wealth of parents.

LINC was the brain-child of Richard Larson, Professor of Engineering Systems at MIT.

The conference

LINC 2013 was the sixth conference on this theme organized by MIT. It presented a range of topics, technologies and strategies for technology-enabled learning for developing countries, and raised a number of questions about the implementation of learning technologies within developing countries. There were over 300 participants from 49 countries.

The conference was supported by MIT, Universiti Teknologi Malaysia, and Fujitsu, enabling many participants from developing countries to be supported in their travel and accommodation.

I report below just a selection of the many sessions around the theme of technology-supported education in or for developing countries, and I apologize that for space reasons, I can’t give a full report on all the sessions.


The conference started with a session on four perspectives on MOOCs, with four speakers making short 20 minute presentations followed by a Q&A panel with the four speakers fielding questions from the audience. I was one of the speakers in this session, and because the session deserves a whole report on its own, I discuss this in more detail in my second post, MOOCs, MIT and Magic.

Sufficient here to say that Sir John Daniel made a point reinforced by speakers in other sections that open and virtual universities have been delivering mass credit-based open learning in developing countries for many decades before MOOCs arrived.

The state of technology-enabled education around the world

The future direction of virtual universities

John Daniel’s point was picked up in this session, when Presidents/Rectors from Tec de Monterrey’s Virtual University in Mexico, the African Virtual University, and the Virtual University of Pakistan described the activities of their institutions. In each case, these projects are reaching very large numbers of students in their own countries or region (around 100,000 each), but each institution has its own sets of challenges as well, especially in reaching the very poor or disadvantaged. However, each of these institutions seems to have a sustainable funding base which promises well for the future.

Bakary Diallo, Rector, African Virtual University

Reaching poor young men in Latin America

Fernando Reimers, the Director of the International Education Policy Program at Harvard, discussed the challenges that youth face in developing countries, particularly adolescent boys and young men, who are turned off by traditional teaching methods that neither fit their learning styles nor prepare them for the skills and knowledge needed in today’s workforce. He pointed out that less than 1% of the poorest 10% in Brazil have Internet access. (Similarly, in Mexico, less than 5% of socio-economic groups C, D and E currently have Internet access, and these three groups constitute almost two-thirds of the population.)

National educational policies and educational reform

Robin Horn discussed a World Bank project, SABER, which stands for A Systems Approach to Better Educational Results. The World Bank has found that often educational reform initiatives fail to gain traction in many countries because they do not align with existing government policies (or put another way, without changing policies, the reforms will not gain traction.) By looking at countries that have successful educational outcomes, and comparing their policies with the policies in other developing countries, it is hoped to identify barriers to educational reform. One example is telecommunications policies. An over-regulated, government controlled access to bandwidths can lead to high Internet costs due to lack of competition, whereas loose or unregulated government policies allow for competition resulting in both increased access and lower Internet costs (Canadian government: please note). Mike Trucano at the World Bank is identifying policies that appear to facilitate or inhibit the application of learning technologies in developing countries and this will be added to SABER in the near future.

The SABER website is packed full of data and analysis and makes fascinating reading for policy aficionados, and certainly my experience is that in all countries (not just developing countries) government policies do have a major influence on innovation and change in education. However, at the same time, ‘top-down’ strategies for increasing the use of learning technologies rarely work (South Korea may be an example of this – see below). In other words, government policies can foster or inhibit educational reform, but the reforms themselves will often have to come from or be supported by those close to the action, the teachers, parents and other stakeholders who will gain most from the changes.

Reaching the poor through educational TV in Brazil

Lúcia Araújo, the CEO of Canal Futura, an educational television network in Brazil, described the extensive use of ‘open source’ educational television and support materials that are being used by teachers throughout Brazil to support their classroom teaching. The programs are freely accessible through public television stations throughout Brazil, and almost 100% of homes in Brazil have access to television, a reminder that in many countries there are still better alternatives than the Internet to reach out to the poor and disadvantaged.

Online universities in Korea and SE Asia

Okwha Lee from Chungbuk National University in South Korea gave an overview of national educational technology developments in South Korea. In terms of sheer scale of online learning South Korea is one of the world’s leaders, with 21 cyber or online universities alone serving over 100,000 Korean students. The South Korean government plays a heavy hand in financing and managing national educational technology initiatives, through KERIS (the Korean Education and Research Information Service), and some of its centralization of data collection and top-down policies have provoked both hunger strikes and a national teachers’ strikes. South Korea has also invested in the ASEAN cyber university, which will include students from Vietnam, Cambodia, Laos, Mynmar, with plans to extend it later to other ASEAN countries. Initially students will access programs through local e-learning centres.

Using Intranets to lower the cost of online learning in Africa

Cliff Missen, Director of the WiderNet Project and eGranary, gave a fascinating talk based around access to online learning in Africa. The WiderNet Project is a nonprofit organization, based at the University of North Carolina at Chapel Hill, that is dedicated to improving digital communications to all communities and individuals around the world in need of educational resources, knowledge, and training. Cliff Missen’s focus was on the high cost of Internet access for learners in developing countries, pointing out that while mobile phones are widespread in Africa, they operate on very narrow bandwidths. For instance, it costs US$2 to download a typical YouTube video – equivalent to a day’s salary for many Africans. Programs requiring extensive bandwidth, such as video lectures, are therefore prohibitively expensive for most Africans.

The WiderNet solution is the development of local Intranets linked to an extensive local library of open educational resources, the e-Granary project. The eGranary Digital Library — “The Internet in a Box” — is an off-line information store that provides instant access to over 30 million Internet resources to institutions lacking adequate Internet access. Through a process of copying web sites (with permission) and delivering them to partner institutions in developing countries, this digital library delivers instant access to a wide variety of educational resources including video, audio, books, journals, and Web sites. This means setting up local servers and terminals, and even building a small wireless station to cover the surrounding community, but not necessarily linked into the wider Internet. This cuts down substantially on the cost of accessing digital educational resources.

MIT BLOSSOMS: Math and Science Video Lessons for High School Classes

This project has developed over 60 short videos to enrich science and math high school lessons, all freely available to teachers as streaming video and Internet downloads and as DVDs and videotapes. The videos are made in short sections, with stopping points for student and teacher activities built into the videos and supported by the teachers’ guide to each video

What makes this program particularly interesting is that many of the videos have been developed in developing countries, through partnerships between MIT and local schools and teachers, and with local presenters, often from high schools themselves. The videos are of high quality, both in terms of content, which is guaranteed by oversight from MIT professors, and in production quality. There is a strong emphasis in relating science and math to everyday life. For examples see: How Mosquitoes Fly in Rain (made in the USA) and Pythagoras and the Juice Seller (made in Jordan).

As a result, these videos are also being increasingly used by schools in the USA as well as by schools in developing countries. Although some of the programs are made in the native language of the country where they are made, they are also provided with English sub-titles or with also a voice-over version. By developing programs with local teachers, programs can be fully integrated within the national curriculum, and MIT BLOSSOMS team has also shown how each video relates to individual US state curricula.

What MIT is doing in technology-enabled learning

This session focused on MIT’s other activities in technology-enabled learning. I will discuss this in more detail in my second post, MOOCs, MIT and Magic.

Parallel sessions

In addition to the above plenary sessions there were also 72 presentations, each of roughly ten minutes, in parallel sessions. I cannot possibly report on them all, but I will report on two that I found really interesting .

Taylor’s University, a private university in Malaysia, is using the iPad for teaching foundational engineering. The iPads are used to access  iBooks and electronic study materials that have been specially developed by the School of Engineering to support and enhance the students’ learning. Many of the animations and applications were specially developed by final year undergraduate students, working with their professor, Mushtak Al-Atabi. There is a video on YouTube that includes a good demonstration of how the iPad is used.

The second was presented by Ahmed Ibrahim in behalf of a team of researchers from McGill University and the University of British Columbia in Canada. They investgated through interviews “sources of knowledge” for students entering a gateway science course. The found that the most common source of ‘physics’ knowledge for the students is the teacher, followed by the textbook and other sources such as the Internet – what the researchers called testimony. Few students used deduction, induction or experimentation as means to ‘verify’ their knowledge. Thus the students did not feel empowered to be able to generate valid physics knowledge by themselves and  they have to turn to experts for it. In other words students are taught about science, rather than doing science, in high schools. They concluded that instructors need to use instructional methods, and activities that promote deeper learning, more conceptual knowledge construction, and more sophisticated epistemological beliefs. In other words, stay away from information transmission and focus on activities that encourage scientific thinking. Although this is a general finding (and based on a very small sample), it is significant for what I have to say in my next post about MOOCs and teaching science.


This was one of the most interesting conferences I have been to for a long time. It brought together practitioners in using technology-enabled learning, primarily in science, math and engineering, from a wide range of countries. As a result there was a wide range of approaches, from the highly ‘engineering-based’ approach of MIT with a focus on advanced or new technologies such as MOOCs, to practitioners tackling the challenges of lack of access to or the high cost of the Internet in many developing countries.

In particular, Internet access remains a major challenge, even in newly emerging countries with dynamic economies, such as Brazil, Mexico, and India, especially for reaching beyond the relatively wealthy middle classes. Even in economically advanced countries such as Canada, wideband access, needed for video-lecture based MOOCs for instance, is problematic for many disadvantaged groups such as the urban poor or for remote aboriginal reserves.

I was therefore interested to see that non-Internet based technologies such as radio, broadcast television or DVDs are still immensely valuable technologies for reaching the poor and disadvantaged in developing countries, as are Internet-linked local learning centres and/or Intranets.

Lastly, despite nearly 80 years of aid to developing countries, finding technology-enabled solutions to increasing access to education that are long-term and sustainable remains a challenge, especially when the aid is generated and organized from developed countries such as the USA and Canada. Local partnerships, cultural adaptation, use of appropriate, low-cost technologies, teacher education, and institutional and government policy changes are all needed if technology transfer is to work.

However, there is clear evidence from this conference that in many developing or economically emerging countries, there are local individuals and institutions finding local and appropriate ways to use technology to support learning. It will often start in the more affluent schools or in universities, but as the Internet gradually widens its spread, it begins to filter down to lower income groups as well. Indeed, in some areas, such as mobile learning in Africa, there is innovation and development taking place that exceeds anything in the developed world, in terms of originality and spread amongst the poor and disadvantaged.

The MIT group behind LINC has done a great service in providing a means for participants from both developed and developing countries to share experience and knowledge in this area.


Innovative online bachelor’s degree from University of Washington

Listen with webReader

© Glenn Rikowski, 2012

Long, K. (2013) UW to offer first all-online degree-completion program The Seattle Times, March 28

Although many universities offer online courses at the bachelor’s level, and fully online master programs, whole bachelor’s programs offered fully online are comparatively rare from major public research universities (although much more common from for-profits, such as University of Phoenix).

The University of Washington program, which begins this fall, is a bachelor of early childhood education, based on ‘years of research done at the UW on the best ways to teach preschoolers.’ More details of the program can be found by clicking here.

There are several interesting features of the program:

  • designed mainly for students transferring in with already an associate degree or 70 or more eligible credits for transfer
  • focused on people already working in child care (preference to registered Washington state residents)
  • partnership with several local community colleges for credit transfer
  • uses video of ‘good’ examples of teaching practice (as well as televised lectures)
  • students make their own videos of themselves practicing those techniques in preschool classrooms
  • limited to 100 students initially, but possibly growing to 300 students a year later
  • aims to fill a major labour market gap in the state
  • much lower average cost for students: $160 per credit = $7,000 for full degree
  • supported by a grant, which with student tuition fees enables the program to be fully cost-recoverable without state funding

UW’s President stated that UW will ‘soon’ be offering several more bachelor degree completion and even some full bachelor’s programs fully online.


This online strategy appears to be particularly well developed. One major barrier to fully online bachelor programs is that students straight out of high school are often considered unready for online learning, given the self-discipline required and their perceived lack of independent learning skills. However, as this program indicates, not all people wanting a bachelor degree are 18 year olds. Many already have a college certificate or diploma, and relevant work experience.

I was also interested in the proposed use of video. The cost of making reasonable quality video has dropped dramatically, and although there is a long history of the use of video in teacher education, education is not the only field where practices and procedures can be demonstrated via video, both by instructors and by student practitioners.

Lastly, this is a public research university operating a different business model that not only lowers costs to students, but is self-financing without state funding. This is because the University of Washington received funding for this program from the Next Generation Learning Challenge program, which is funded mainly by the Gates and Hewlett Foundations. The NGLC program is having a  major impact across the USA in encouraging institutions to experiment with online and open learning in innovative ways (I was one of the many grant proposal evaluators – but did not evaluate this proposal).

We don’t have access to such grant programs in Canada, at least in recent years. This is a role perhaps that is needed from the Canadian Federal government, but this is unlikely to happen under the current Conservatives, unfortunately, as they wish to decrease rather than increase the federal government’s role in health and education. However, as this program indicates, the return on investment from such grants for the system as a whole is high. In any case, this model could help reduce at least student tuition costs, with state FTE funding being used to replace the philanthropic funding.

Over to you

Can you let me know of other fully online bachelor degrees being offered by public research universities or state universities?