July 26, 2014

Submitting a doctoral thesis on online learning? Some things to keep in mind

Listen with webReader
© Relativity Media, 2011

© Relativity Media, 2011

Old people often complain that the world is going to hell in a hand-basket, that standards are falling, and it used to be better in our day. Having examined over 40 doctoral students over the last 45 years, often as the external examiner, it would be easy for me to fall into that trap. On the contrary, though, I am impressed with the quality of theses I have been examining recently, partly because of the quality of the students, partly because of the quality of the supervision, and partly because online learning and educational technology in general have matured as a field of study.

However, one advantage of being old is that you begin to see patterns or themes that either come round every 10 years or so or never go away, and that certainly applies to Ph.D. theses in this field. So I thought I might offer some advice to students as to what examiners tend to look for in theses in this field, although technically it should be the supervisors doing this, not me.

Who’s being examined: student or supervisor?

When I have failed a student (which is rare but has happened) it’s ALWAYS been because the standard of supervision was so poor that the student never stood a chance. Somewhat more frequently (although still fairly uncommon), the examiners’ recommendation was pass with substantial revision, or ‘adequate’ in some European countries. Both these classifications carry a significant message to the academic department that the supervisor(s) weren’t doing their job properly. (Although to be fair, in at least one case the thesis was submitted almost in desperation by the department, because the student had exhausted all his many different supervisors, and was running out of the very generous time allowed to submit.)

So the good news, students, is that, despite what might appear to be the opposite, by the time it comes to submitting your thesis for exam, the university is (or should be) 100 per cent behind you in wanting to get you through. (In recent years, this pressure from the university on examiners to pass students sometimes appears to be almost desperate, because a successful Ph.D. may carry a very significant weight towards the performance indicators for the university.)

Criteria for success

So at the risk of over-simplification, here is my advice for students, in particular, on what I, as an examiner, tend to look for in a thesis, starting with the most important. My comments apply mainly, but not exclusively, to traditional, research-based theses.

Level 1.

I have three main criteria which MUST be met for a pass:

  • is it original?
  • does it demonstrate that the student is capable of conducting independent research?
  • does the evidence support the conclusions drawn in the thesis?

Originality

The minimum a doctoral thesis must do is tell me something that was not already known in the field. Now this can still be what students often see as a negative outcome: their main hypothesis is found to be false. That’s fine, if it is a commonly held hypothesis in the field. (Example: digital natives are different from digital immigrants: no evidence was found for this in the study.) If it disproves or questions current wisdom, that’s good, even if the result was not what you were expecting. In fact, that’s really good, because the ‘null hypothesis’ – I’m trying to prove my hypothesis is false - is a more rigorous test than trying to find evidence to support something you actually thought to be true before you started the research (see Karl Popper (1934) on this).

Competence in research

For students, there are three good reasons for doing a Ph.D.:

  • because you want an academic position in a university or college
  • because you want to work as a full-time researcher outside the university
  • because you have a burning question to answer (e,.g.: what’s best done face-to-face, and what online, when teaching quantum physics?)

However, the main purpose of a Ph.D. (as distinct from other post-graduate qualifications) from a professional or institutional perspective is to enable students to conduct independent research. Thus the thesis must demonstrate this competency. In a sense, it is a trust issue: if this person does research, we should be able to trust him or her to do it within the norms and values of the subject discipline. (This is why it is stupid to even think of cheating by falsifying data or plagiarism: if found out, you will never get an academic job in a university, never mind the Ph.D.)

Evidence-based conclusions

My emphasis here is on ensuring that appropriate conclusions are drawn from whatever evidence is used (which should include the literature review as well as the actual data collected). If for instance the results are contrary to what might be expected from the literature review, some explanation or discussion is needed about why there is this difference. It may have to be speculative, but such contradictions need to be addressed and not ignored.

Level 2

Normally (although there will be exceptions) a good thesis will also meet the following criteria:

  • there is a clear narrative and structure to the thesis
  • there is a clear data audit trail, and all the raw/original data is accessible to examiners and the general public, subject to normal privacy/ethical requirements
  • the results must be meaningfully significant

Narrative and structure

Even in an applied thesis, this is a necessary component of a good thesis. The reader must be able to follow the plot – and the plot must be clear. The usual structure for a thesis in our field is:

  • identification of an issue or problem
  • review of relevant previous research/studies
  • identification of a research question or set of questions
  • methodology
  • results
  • conclusions and discussion.

However, other structures are possible. In an applied degree, the structure will or should be different, but even so, the reader in the main body of thesis should be able to follow clearly the rationale for the study, how it was conducted, the results, and the conclusions.

Data audit

Most – but not all – theses in the educational technology field have an empirical component. Data is collected, analysed and interpreted. All these steps have to be competently conducted, whether the data is mainly quantitative, qualitative or both. This usually means ensuring that there is a clear trail linking raw data through analysis into conclusions that can be followed and checked easily by a diligent reader (in this case, the examiners). This is especially important with qualitative data, because it is easy to cherry-pick comments that support your prior prejudices or assumptions while ignoring those that don’t fit. As an examiner, I do want access to raw data, even if it’s in an appendix or an online database.

However, I am also willing to accept a thesis that is pure argument. Nevertheless, this is a very risky option because this means offering something that is quite original and which can be adequately defended against the whole collective wisdom of the field. In the field of educational technology, it is hard to see how this can be done without resorting to some form of empirical evidence – but perhaps not impossible.

Significance of the research question and results

This is often the best test of how much the thesis is mainly the work of the supervisor and how much the student. A good supervisor can more or less frogmarch a student through the various procedural steps in doing a doctoral thesis, but what the supervisor cannot – or should not – provide is the original spark of a good research question, and the ability to see the significance of the study for the field as a whole. This is why orals are so important – this is the place to say why your study matters, but it also helps if you address this at the beginning and end of your written thesis as well.

Too often I have seen students who have asked questions that inevitably produce results that are trivial, already known, or are completely off-base. Even more tragic is when the student has an unexpected but important, well-founded set of data, but is unable to see the significance of the data for the field in general.

The problem is that supervisors quite rightly drill it into students that they must chose a research question that is manageable by an individual working mainly alone, and that their conclusions must be based on the data collected, but this does not mean that the research question needs to be trivial or that once the conclusions have been properly drawn, there should be no further discussion of their significance for the field as a whole. This is the real test of a student’s academic ability.

Tips for success

There are thousands of possible tips one could give to help Ph.D. students, but I will focus on just a few issues that seem to come up a lot in theses in this area:

1. Do a masters degree on online learning first

This will give you a good overview of the issues involved in online learning and should provide some essentially preparatory skills, such as an introduction to research methods and extensive writing.

Do this prior to starting a Ph.D. See: Recommended graduate programs in e-learning for a list of appropriate programs.

Do it online if possible so you know what its’s like to be an online student.

At a minimum, take a course on research methods in the social sciences/online learning.

2. Get a good supervisor

The trick is to find a supervisor willing to accept your proposed area of research. Try to find someone in the local Faculty of Education with an interest in online learning and try to negotiate a research topic of mutual interest. This is really the hardest and most important part. Getting the right supervisor is absolutely essential. However, there are many more potential students than education faculty interested in research in online learning.

If you find a willing and sympathetic local faculty member with an interest in online learning but worried they don’t have the right expertise to supervise your particular interest, suggest a committee with an external supervisor (anywhere in the world) who really has the expertise and who may be willing to share the supervision with your local supervisor. Again, though, your chances of getting either an internal or external supervisor is much higher if that person already knows you or is aware of your work. Doing an online masters might help here, since some of the instructors on the course may be interested in supervising you for a Ph.D., especially if they know your work through the masters. But again, good professors with expertise in online learning are already likely to have a full supervision load, so it is not easy. (And don’t ask me – I’m retired!)

This means that even before applying for a Ph.D., you need to do some homework. Identify a topic with some degree of flexibility, have in mind an internal and an external supervisor, and show that you have done the necessary courses such as research methods, educational theory, etc., that will prepare you for a Ph.D. (or are willing to do them first).

3. Develop a good research question

See above. Ideally, it should meet the following requirements:

a. The research is likely to add something new to our knowledge in the field

b. The results of the research (positive, negative or descriptive) are likely to be significant/important for instructors, students or an institution

c. You can do the research to answer the question on your own, within a year or so of starting to collect data.

d. It can be done within the ethical requirements of research

It is even better if you can collect data as part of your everyday work, for example by researching your own online teaching.

4. Get a good understanding of sampling and the level of statistics that your study requires

Even if you are doing a qualitative study, you really need to understand sampling – choosing subjects to participate in the study. The two issues you need to watch out for are:

1. Bias in the initial choice of subjects, especially choosing subjects that are likely to support any hypotheses or assumptions you may already have. (Hence the danger of researching your own teaching – but you can turn this to advantage by taking care to identify your prior assumptions in advance and being careful not to be unduly influenced by them in the design of the research).

2. Focusing too much on the number of respondents and not on the response rate, especially in quantitative studies. Most studies with response rates of 40 per cent or less are usually worthless, because the responders are unlikely to be representative of the the whole group (which is why student evaluation data is really dangerous, as the response rate is usually biased towards successful students, who are more likely to complete the questionnaires than unsuccessful students.) When choosing a sample, try to find independent data that can help you identify the extent of the likely bias due to non-responders. For instance, if looking at digital natives, check the age distribution of your responders with the age distribution of the total of the group from which you drew the sample, if that is available. If you had a cohort of 100 students, and 20 responded, how does the average age of the responders compare with the average age of the whole 200? If the average age of responders is much lower than non-responders, what significance does this have for your study?

Understanding statistics is a whole other matter. If you intend to do anything more complicated quantitatively than adding up quantitative data, make sure you understand the necessary statistics, especially what statistically different means. For instance, if you have a very large sample, even small differences are likely to be statistically significant, but they may not be meaningfully significant. Small samples increase the difficulty of getting statistically significant results, so drawing conclusions even when differences look large can be very dangerous from small samples.

5. Avoid tautological research design or quantitative designs with no independent variables

Basically, this means asking a question, stating a hypothesis, or designing research in such a way that the question or  hypothesis itself provides the answer. To elaborate, research question” “What is quality in online learning?’ ‘Answer: “It is defined by what educators say makes for quality in online courses and my research shows that these are clear learning objectives, accessibility, learner engagement, etc..” There is no independent variable here to validate the statements made by educators. (An independent variable might be exam results, participation rates of disabled people, etc.). Education is full of such self-justifications that have no clear, independent variables against which such statements have been tested. Merely re-iterating what people currently think is not original research.

For this reason, I am very skeptical of Delphi studies, which merely re-iterate already established views and opinions. I always ask: ‘Would a thorough literature review have provided the same results?’ The answer is usually: ‘No, you get a far more comprehensive and reliable overview of the topic from the literature review.’

6. Write well

Easily said, but not  easily done. However, writing that is clear, well-structured, evidence-based, grammatically correct and well argued makes a huge difference when it comes to the examination of the thesis. I have seen really weak research studies get through from the sheer quality of the writing. I have seen other really good research studies sent back for major revision because they were so badly written.

Writing is a skill, so it gets better with practice. This usually means writing the same chapter several times until you get it right. Write the first draft, put it away and come back to it several days later. Re-read it and then clarify or improve what you’ve written. Do it again, and again, until you are satisfied that someone who knows nothing about the subject beforehand can understand it. (Don’t assume that all the examiners will be expert in your particular topic.) If you can, get someone such as a spouse who knows nothing about the subject to read through a chapter and ask them just to put question marks alongside sentences or paragraphs they don’t understand. Then re-write them until they do.

The more practice and feedback you can get on your writing, the better, and this is best done long before you get to a final draft.

Is the Ph.D. process broken?

A general comment about the whole Ph.D. process: while not completely broken, it is probably the most costly and inefficient academic process in the whole university, riddled with bureaucracy, lack of clarity for students, and certainly in the non-quantitative areas, open to all kinds of challenges regarding the process and standards.

This is further complicated by a move in recent years to applied rather than research theses. In an applied thesis, the aim is to come up with something useful that can be applied in the field, such as the design of an e-portfolio template that can be used for an end of course assessment, rather than the traditional research thesis. I believe this to be a step in the right direction. Unfortunately though education departments often struggle to provide clear guidance to both students and examiners about the criteria for assessing such new degrees, which makes it even more of a shot in the dark in deciding whether a thesis is ready for submission.

Other suggestions or criticisms

These are (as usual) very personal comments. I’m sure students would like to hear from other examiners in this field, particularly if there is disagreement with my criteria and advice. And I’d like to hear from doctoral students themselves. Suggestions for further readings on the Ph.D. process would also be welcome.

I would also like to hear from those who question the whole Ph.D. process. I must admit to mixed feelings. We do need to develop good quality researchers in the field, and I think a research thesis is one way of doing this. I do feel though that the whole process could be made more efficient than it is at the moment.

In the meantime, good luck to all of you who are struggling with your doctoral studies in this field – we need you to succeed!

Reference

Popper, K. (1959) The Logic of Scientific Discovery London: Routlege

The nature of knowledge and the implications for teaching

Listen with webReader
© LifeSun, 2013

© LifeSun, 2013

Teaching in a Digital Age

I’ve now just published Chapter 2 of my open textbook, Teaching in a Digital Age.

Chapter 1 looks at the fundamental changes that are happening in our digital age, and the broad implications these changes have for teaching and learning.

The book examines the underlying principles that guide effective teaching in an age when everyone,and in particular the students we are teaching, are using technology.

The Preface spells out in more detail the reasons why I decided to publish the book, and the reasons for choosing an open format.

Chapter 2: The nature of knowledge and the implications for teaching

This chapter discusses the relationship between our views on the nature of knowledge and the way we decide to teach. It’s about epistemology, but don’t be frightened off by the term: its basically about what makes us believe something is ‘true.’ This has fundamental implications for how we decide to teach. The chapter covers the following:

1. A dinner party scenario showing a clash of fundamental beliefs about the nature of knowledge between an engineer and a writer.

2. Art, theory, research and best practices in teaching: what guides (or should guide) the way we teach.

3. A brief introduction to epistemology and why it’s important. In particular it very briefly describes three currently popular epistemological positions in education, objectivism, constructivism and connectivism, and their implications for teaching and learning.

4. Academic knowledge. I make the distinction between academic knowledge and everyday knowledge, and then discuss whether new digital technologies change the nature of knowledge, ending with a justification for academic knowledge in a digital age, while also arguing that other forms of knowledge can be equally important, depending on the circumstances.

The key takeaways from the chapter are as follows:

1. Teaching is a highly complex occupation, which needs to adapt to a great deal of variety in context, subject matter and learners. It does not lend itself to broad generalizations. Nevertheless it is possible to provide guidelines or principles based on best practices, theory and research, that must then be adapted or modified to local conditions.

2. Our underlying beliefs and values, usually shared by other experts in a subject domain, shape our approach to teaching. These underlying beliefs and values are often implicit and are often not directly shared with our students, even though they are seen as essential components of becoming an ‘expert’ in a particular subject domain.

3. It is argued that academic knowledge is different from other forms of knowledge, and is even more relevant today in a digital age.

4. However, academic knowledge is not the only kind of knowledge that is important in today’s society, and as teachers we have to be aware of other forms of knowledge and their potential importance to our students, and make sure that we are providing the full range of contents and skills needed for students in a digital age.

Comments and criticisms are welcome, either as comments to this blog post, or as comments directly to the chapter (but see below).

Technical challenges with open publishing

As I reported in an earlier post, I’m trying to push the boundaries with open publishing. I want to make the book as interactive as possible but to date the open publishing technology ironically is very restraining. I’m getting tremendous help from the open textbook team at BCcampus, but the platform, PressBooks, is still very much designed in the mode of a traditional book.

So far, BCcampus has been able to add functions for learning objectives, tables, activities, and key takeaways, which have been very helpful. A moderated comment  function has just been added for the end of each chapter (I’m still trying to work out how to moderate this – I’m bloody useless with the technology!)

Here’s what I’m still trying for at the moment:

1. A comment facility that an author can add to each section, as well as the whole chapter.

2. To find a neat way for me as author to provide feedback on readers’ responses to the activities.

3. To find a good, robust, reliable, secure open source, free threaded discussion forum that will allow me to manage discussion forums on different topics covered by the book – or another way to integrate an asynchronous discussion function within the book. (Yes, I AM a social constructivist!)

Any suggestions welcome – we are actively exploring options at the moment. There are probably good solutions already out there. As I said, I’m not primarily a technologist but an educator, so help is definitely needed.

Next chapter: Theory and practice in teaching for a digital age: 

  • Summary of current learning theories and teaching approaches
  • Teaching and learning styles
  • Deep vs surface learning.
  • Learner-centered teaching, learner engagement, motivation.
  • What we know about skills development
  • Competency based learning
  • Learning design models (ADDIE, communities of practice, flexible design models, personalized learning environments).
  • Digital natives and digital literacy
  • Summary of research on teaching.

I still have more work to do on this outline: suggestions welcome.

Your homework

In the meantime, please take a look at Chapter 2 and send me your comments. In particular:

1. Is it too theoretical or abstract?

2. Have I accurately represented objectivism, constructivism and connectivism?

3. Do you agree that academic knowledge is different from everyday knowledge, and that it is an important distinction?

4. Does the scenario work for you?

5. Would you recommend this chapter to your teaching colleagues as worthwhile reading?

Hey – it IS an open textbook, and there’s no more World Cup football after Sunday.

Opening up: chapter one of Teaching in a Digital Age

Listen with webReader
The view when I was writing Chapter 1, from the Island of Braç, Croatia

The view when I was writing Chapter 1, from the Island of Braç, Croatia

I’ve not been blogging much recently, because (a) I’ve been on holiday for a month in the Mediterranean and (b) I’ve been writing my book.

Teaching in a Digital World

As you are probably aware, I’m doing this as an open textbook, which means learning to adapt to a new publishing environment. As well as writing a darned good book for instructors on teaching in in a digital age, my aim is to push the boundaries a little with open publishing, to move it out of the traditional publishing mode into a a truly open textbook, with the help of the good folks at BCcampus who are running their open textbook project.

You will see that there’s still a long way to go before we can really exploit all the virtues of openness in publishing, and I’m hoping you can help me – and BCcampus- along the way with this.

What I’d like you to do

What I’m hoping you will do is find the time to browse the content list and preface (which is not yet finalized) and read more carefully Chapter 1, Fundamental Change in Higher Education, then give me some feedback. To do this, just go to: http://opentextbc.ca/teachinginadigitalage/

The first thing you will realise is that there is nowhere to comment on the published version. (Ideally I would like to have a comment section after every section of each chapter.) I will be publishing another post about some of the technical features I feel are still needed within PressBooks, but in the meantime, please use the comment page on this post (in which case your comment will be public), or use the e-mail facility  at the bottom of the chapter or preface (in which case your comment will be private). Send to tony.bates@ubc.ca .

What kind of feedback?

At this stage, I’m looking more for comments on the substance of the book, rather than the openness (my next post will deal with the technical issues). To help you with feedback, here are some of the questions I’m looking for answers to:

  1. Market: from what you’ve read so far, does there appear to be a need for this type of book? Are there other books that already do what I’m trying to do?
  2. Structure: does Chapter 1 have the right structure? Does it flow and is it logically organized?How could it be improved?
  3. Content: is there anything missing, dubious or just plain wrong? References that I have missed that support (or challenge) the content would also be useful.
  4. Do the activities work for you? Are there more interesting activities you can think of? How best to provide feedback? (e.g. does the use of ‘Parts’ work for this?)
  5. Presentation: are there other media/better images I could use? Is the balance between text and media right?

What’s in it for you?

First, I hope the content will be useful. Chapter 1 is probably the least useful of all the chapters to come for readers of this blog, because it’s aimed at instructors who are not comfortable with using technology, but if the material is useful to you, you are free to use it in whatever way you wish, within the constraints of a Creative Commons license.

Second, the whole point of open education is to share and collaborate. I’m opening up my book and the process; in return can I get some help and advice? In anticipation and with a degree of nervousness I look forward to your comments.

Are universities teaching the skills needed in a knowledge-based economy?

Listen with webReader

Knowledge worker 2

I’ve been on holiday the last two and a half weeks, but also doing some writing for my open textbook on teaching in a digital age.

Are universities teaching the skills needed in a knowledge-based economy?

This is one of the questions I have been asking myself, and there of course a couple of ways to respond to this:

1. Of course – we teach critical thinking, problem solving, research skills, and encourage original thinking: just the skills needed in today’s work force.

2. That’s not our job. Our job is the pure exploration of new knowledge and ideas and to pass that love of knowledge on to the next generation. If some of that rubs off in the commercial world, well and good, but that’s not our purpose.

I have a little bit of sympathy for the second answer. Universities provide society with a safe way of gambling on the future, by encouraging innovative research and development that may have no immediate apparent short-term benefits, or may lead to nowhere, without incurring major commercial or social loss. Another critical role is the ability to challenge the assumptions or positions of powerful agencies outside the university, such as government or industry, when these seem to be in conflict with evidence or ethical principles or the general good of society. There is a real danger in tying university and college programs too closely to immediate labour market needs. Labour market demand can shift very rapidly, and in particular, in a knowledge-based society, it is impossible to judge what kinds of work, business or trades will emerge in the future.

However the rapid expansion in higher education and the very large sums invested in higher education is largely driven by government, employers and parents wanting a work-force that is employable, competitive and if possible affluent. Indeed, this has always been one role for universities, which started as preparation and training for the church, law and much later, government administration.

So it’s the first response I want to examine more closely. Are the skills that universities claim to be developing (a) actually being done and (b) if they are being done, are they really the skills needed in a knowledge-based economy.

The characteristics of knowledge-based workers

To answer that question let’s attempt to identify the characteristics of knowledge-based workers. Here’s my view on this (somewhat supported by bodies such as the Canadian Chamber of Commerce and the OECD – I’m searching for the actual references.)

  • they usually work in small companies (less than 10 people)
  • they sometimes own their own business, or are their own boss; sometimes they have created their own job, which didn’t exist until they worked out there was a need and they could meet that need
  • they often work on contract, so they move around from one job to another fairly frequently
  • the nature of their work tends to change over time, in response to market and technological developments and thus the knowledge base of their work tends to change rapidly
  • they are digitally smart or at least competent digitally; digital technology is often a key component of their work
  • because they often work for themselves or in small companies, they play many roles: marketer, designer, salesperson, accountant/business manager, technical support, for example
  • they depend heavily on informal social networks to bring in business and to keep up to date with current trends in their area of work
  • they need to keep on learning to stay on top in their work, and they need to manage that learning for themselves
  • above all, they need to be flexible, to adapt to rapidly changing conditions around them.

It can be seen then that it is difficult to predict with any accuracy what many graduates will actually be doing ten or so years after graduation, except in very broad terms. Even in areas where there are clear professional tracks, such as medicine, nursing or engineering, the knowledge base and even the working conditions are likely to undergo rapid change and transformation over that period of time. However, we shall see that it is possible to predict the skills they will need to survive and prosper in such an environment.

Content and skills

Knowledge involves two strongly inter-linked but different components: content and skills. Content includes facts, ideas, principles, evidence, and descriptions of processes or procedures.

The skills required in a knowledge society include the following (Conference Board of Canada, 1992):

  • communications skills: as well as the traditional communication skills of reading, speaking and writing coherently and clearly, we need to add social media communication skills. These might include the ability to create a short YouTube video to capture the demonstration of a process or to make a sales pitch, the ability to reach out through the Internet to a wide community of people with one’s ideas, to receive and incorporate feedback, to share information appropriately, and to identify trends and ideas from elsewhere;
  • the ability to learn independently: this means taking responsibility for working out what you need to know, and where to find that knowledge. This is an ongoing process in knowledge-based work, because the knowledge base is constantly changing. Incidentally I am not talking here necessarily of academic knowledge, although that too is changing; it could be learning about new equipment, new ways of doing things, or learning who are the people you need to know to get the job done;
  • ethics and responsibility: this is required to build trust (particularly important in informal social networks), but also because generally it is good business in a world where there are many different players, and a greater degree of reliance on others to accomplish one’s own goals;
  • teamwork and flexibility: although many knowledge workers work independently or in very small companies, they depend heavily on collaboration and the sharing of knowledge with others in related but independent organizations. In small companies, it is essential that all employees work closely together, share the same vision for a company and help each other out. The ‘pooling’ of collective knowledge, problem-solving and implementation requires good teamwork and flexibility in taking on tasks or solving problems that may be outside a narrow job definition but necessary for success;
  • thinking skills (critical thinking, problem-solving, creativity, originality, strategizing): of all the skills needed in a knowledge-based society, these are some of  the most important. Businesses increasingly depend on the creation of new products, new services and new processes to keep down costs and increase competitiveness. Universities in particular have always prided themselves on teaching such intellectual skills, but we have seen that the increased move to larger classes and more information transmission, especially at the undergraduate level, challenges this assumption. Also, it is not just in the higher management positions that these skills are required. Trades people in particular are increasingly having to be problem-solvers rather than following standard processes, which tend to become automated. Anyone dealing with the public needs to be able to identify needs and find appropriate solutions;
  • digital skills: most knowledge-based activities depend heavily on the use of technology. However the key issue is that these skills need to be embedded within the knowledge domain in which the activity takes place. This means for instance real estate agents knowing how to use geographical information systems to identify sales trends and prices in different geographical locations, welders knowing how to use computers to control robots examining and repairing pipes, radiologists knowing how to use new technologies that ‘read’ and analyze MRI scans. Thus the use of digital technology needs to be integrated with and evaluated through the knowledge-base of the subject area;
  • knowledge management: this is perhaps the most over-arching of all the skills. Knowledge is not only rapidly changing with new research, new developments, and rapid dissemination of ideas and practices over the Internet, but the sources of information are increasing, with a great deal of variability in the reliability or validity of the information. Thus the knowledge that an engineer learns at university can quickly become obsolete. There is so much information now in the health area that it is impossible for a medical student to master all drug treatments, medical procedures and emerging science such a genetic engineering, even within an eight year program. The key skill in a knowledge-based society is knowledge management: how to find, evaluate, analyze, apply and disseminate information, within a particular context. This is a skill that graduates will need to employ long after graduation.

Most faculty, at least in universities, are well trained in content and have a deep understanding of the subject areas in which they are teaching. Expertise in skills development though is another matter. The issue here is not so much that faculty do not help students develop skills – they do – but whether these intellectual skills match the needs of knowledge-based workers, and whether enough emphasis is given to skills development within the curriculum.

Embedding skills in the curriculum

We know a lot from research about skills and skill development (again, references to come):

  • skills development is relatively context-specific. In other words, these skills need to be embedded within a knowledge domain. For example, problem solving in medicine is different from problem-solving in business. Different processes and approaches are used to solve problems in these domains (for instance, medicine tends to be more deductive, business more intuitive; medicine is more risk averse, business is more likely to accept a solution that will contain a higher element of risk or uncertainty);
  • learners need practice – often a good deal of practice – to reach mastery and consistency in a particular skill;
  • skills are often best learned in relatively small steps, with steps increasing as mastery is approached;
  • learners need feedback on a regular basis to learn skills quickly and effectively; immediate feedback is usually better than late feedback;
  • although skills can be learned by trial and error without the intervention of a teacher, coach, or technology, skills development can be greatly enhanced with appropriate interventions, which means adopting appropriate teaching methods and technologies  for skills development.
  • although content can be transmitted equally effectively through a wide range of media, skills development is much more tied to specific teaching approaches and technologies.

What should we do?

So here are some questions to discuss at the next departmental meeting discussing curriculum:

  • what are the skills we are trying to develop in this program? Are they explicitly stated and communicated to students?
  • how well do they match the skills required by knowledge-based workers? Do we need to add or adapt  existing skills to make them more relevant? If so, would this have a negative or a positive effect on the academic integrity of the program and particularly on the choice of content?
  • what teaching methods are most likely to lead the development of such skills?
  • what opportunities should we provide for practice and feedback on the development of the skills we have chosen?
  • how do we assess such skills?

Your feedback requested

1. Have I covered the main skills needed in a knowledge-based society? What have I missed?

2. Do you agree that these are important skills? If so, should universities explicitly try to develop them?

3. What are you or your university doing (if anything) to ensure such skills are taught, and taught well?

4. What roles if any do you think technology, and in particular online learning, can play in helping to develop such skills?

5. Any other comments on this topic

What do instructors need to know about teaching in a digital age?

Listen with webReader

Jacques Cartier project 2

The next step on my road to writing an open textbook is to draft an overview of the contents of the book. Probably no stage of writing a book is more important than this and so I’m going to throw open the process and ask for your comments and suggestions.

Who is the book for?

I’m aiming mainly at faculty, instructors and teaching assistants in universities and colleges (including two year colleges). I’m particularly keen on reaching post-graduate students thinking of a career in higher education, and young lecturers and instructors who are fairly new, but I recognize that more experienced classroom instructors will also need some guidance and help as they move increasingly online.

I’d also like to get senior administrators such as Deans, Vice-Provosts, Teaching and Learning, and Provosts interested in the topics, as well as instructional designers and learning technology support staff, and the book could also be of interest to many k-12 teachers, but my main focus is on instructors in post-secondary education.

Format

This post is essentially about content, but content and format are inextricably linked. I discussed possible formats in an earlier post, but I have described some of the activities I’m thinking of incorporating at the end of this post.

Outline of the book

This is very much a first draft and could change dramatically depending on the feedback I get. But you have to start somewhere.

i. Preface: what the book’s about; who it’s for; the format of the book; contributors

1. From periphery to mainstream: the evolution of technology-based teaching in higher education:  a very short history of educational technology; why change is necessary (needs of learners/needs of the economy/increasing cost of HE); challenges faced by instructors; this book aims to help.

2. The nature of knowledge and implications for teaching methods: Types of knowledge (epistemology) and implications for teaching.  Does technology change how we think or learn? Summary of learning theories (including connectivism). Teaching (and learning) styles. Competency based learning. Instructional design models (ADDIE, communities of practice, flexible design models). What we know about learning with technology (very briefly!)

3. Understanding technology Understanding media and technologies in educational contexts., including broadcast vs communicative; synchronous vs asynchronous; live vs recorded; real vs virtual. Locating different technologies within this framework, including lecture capture, LMSs, multimedia, simulations, remote labs, social media, virtual reality. Adaptive learning. Can computers replace teachers? A guide to media selection (might be moved to Chapter 6).

4. Modes of delivery: face-to-face; blended; hybrid; fully online. Open content and open learning (including issues of IP, OERs and MOOCs). Implications for the design of teaching. Impact on the campus/learning spaces.

5. Forms of assessment continuous vs summative; non-formal (feedback) vs formal (graded); multiple-choice; short answers; essays; project-work; e-portfolios; group work. Pros and cons and relationship to teaching goals. Lots of examples.

6. Nine (or 12) steps to quality teaching  with technology: identify your philosophy of teaching; what kind of course? teamwork; use of resources; master the technology; set appropriate learning goals; course structure and student activities; learner support; managing discussion; student assessment; course evaluation, including formative and role of learning analytics

7. Design templates and example module/course/program designs

Design models

  • traditional course (lectures, discussion, labs, etc.) with technology add-on
  • flipped classroom
  • ADDIE model
  • community/networked-based
  • flexible learning design (e.g. ETEC 522)
  • other?

Hybrid models

  • re-purposing (module, course, program) for different target groups
  • integrated design for multiple audiences (full-time, part-time, off campus)
  • adaptive learning models (e.g. maritime training)
  • can/should you mix and match approaches?

8. Strategies and planning for digital teaching: planning at the program level; roles for faculty, including content delivery and assessment, facilitator, co-creator of content, teaching consultant, managing a team including adjuncts and TAs; costs and time management; organization of resources (e.g. central or devolved); technology and educational productivity. Examples of good institutional strategies.

9. Faculty development (principles and examples) Why the current model is broken. Rewards and motivation for change. Types of faculty development: pre-service and in-service; just-in-time; brainstorming; mentoring; working in a team; mandatory courses. Examples of successful models.

10. Conclusion: What will the future look like? 12 rules of teaching in a digital age. Anything else I haven’t considered!

Appendices

A. List of resources

Length: approximately 80,000 words/250 pages, with chapters of roughly 30 pages each.

Format: roughly 10 modules per chapter, each module = 30 minutes reading, with 30 mins activity = 10 hours study time per chapter = 100 hours for the book = one three credit course!

Two versions of the book: a straight read; one with in-built activities

Activities

  • non-graded  assessment questions for feedback purposes, including using all the various forms of assessment covered in Chapter 5
  • asynchronous discussion forums on set topics
  • project work for readers, including the design of a module, design of a course template, design of student activities, design of an assessment strategy
  • feedback and evaluation of other readers’ project work
  • guest lectures/interventions on specific topics
  • an ‘alumni’ network for readers of the book
  • developing a community of practice around the book
  • suggested assessment strategy if book used as a course.

Feedback really welcomed (I think)

I’m really welcoming feedback, and I’m also hoping for contributions and participation in the writing from others who are more specialized than myself. But in the end it’s my overall conception so I have to take overall responsibility for it. So here’s some of things I’m hoping to get from readers of this blog:

  • am I mad to open up this early stage of a book to the public? Will others steal my ideas?
  • have I got this completely wrong? Do instructors really need something completely different? Do we need instructors at all?
  • what important topics have I missed?
  • should I tie the book to its possible use as or within a course or should I just keep it as a book?
  • will instructors welcome activities or will they just skip them?
  • any other comments or suggestions

I’m actually going to be on a small island in the Mediterranean so you can be as rude as you like!

Milna, Brac, Croatia - where I plan to start writing the book

Milna, Brac, Croatia – where I plan to start writing the book