October 31, 2014

The strengths and weaknesses of MOOCs: Part I

Listen with webReader
© Carson Kahn, 2012

© Carson Kahn, 2012

How many times has an author cried: ‘Oh, God, I wish I’d never started on this!’? Well, I wanted to have a short section on MOOCs within a chapter on design models for teaching and learning in my online textbook, ‘Teaching in a Digital Age‘ and it is probably poetic justice that the section on MOOCs is now ballooning into a monster of its own.

Although I don’t want to inflate the importance of MOOCs, I fear I’m probably going to have to devote a whole chapter to the topic. (Well, I do have to agree that the topic is relevant to teaching in a digital age.) However, whether MOOCs get their own chapter may well depend on how you, my readers, react to what I’m writing, which I’m putting into this blog via a series of posts.

I’ve already had two posts, one on the key design features of MOOCs in general, and another on the differences between cMOOCs and xMOOCs that has already generated quite a lot of heated comments. Here I’m posting the first part of my discussion on the strengths and weaknesses of MOOCs. I’ll do another couple of posts to wrap it up (I desperately hope).

Strengths and weaknesses of MOOCs

Because at the time of writing most MOOCs are less than three years old, there are not many research publications on MOOCs, although research activities are now beginning to pick up. Much of the research so far on MOOCs comes from the institutions offering MOOCs, mainly in the form of reports on enrolments. The commercial platform providers such as Coursera and Udacity have provided limited research information overall, which is a pity, because they have access to really big data sets. However, MIT and Harvard, the founding partners in edX, are conducting some research, mainly on their own courses. There is very little research to date on cMOOCs, and what there is is mainly qualitative.

However, wherever possible, I have tried to use any research that has been done that provides insight into the strengths and weaknesses of MOOCs. At the same time, we should be clear that we are discussing a phenomenon that to date has been marked largely by political, emotional and often irrational discourse, and in terms of hard evidence, we will have to wait for some time. Thus any analysis must also address philosophical or value issues, which is a sure recipe for generating heated discussion.

Lastly, it should be remembered when evaluating MOOCs is that I am applying the criteria of whether MOOCs are likely to lead to the kinds of learning needed in a digital age: in other words, do they help develop the knowledge and skills defined in Chapter 1 of Teaching in a Digital Age?

1. Open and free education

MOOCs, particularly xMOOCs, deliver high quality content from some of the world’s best universities for free to anyone with a computer and an Internet connection. This in itself is an amazing value proposition. In this sense, MOOCs are an incredibly valuable addition to educational provision. Who could argue against this? Certainly not me, so long as the argument for MOOCs goes no further.

However, this is not the only form of open and free education. Libraries, open textbooks and educational broadcasting are also open and free to end users and have been for some time, even if they do not have the same power and reach as Internet-based delivery. There are also lessons we can learn from these earlier forms of open and free education that also apply to MOOCs.

The first is that these earlier forms of open and free did not replace the need for formal, credit-based education, but were used to supplement or strengthen it. In other words, MOOCs are a tool for continuing and informal education, which has high value in its own right.

The second lesson is that there have been many attempts in the past to use open and massive education through educational broadcasting and satellite broadcasting in Third World countries (see Bates, 1985), and they all failed miserably for a variety of reasons, the most important being:

  • the high cost of ground equipment (especially security),
  • the need for local support for learners without high levels of education, and its high cost
  • the need to adapt to the culture of the receiving countries
  • the difficulty of covering the operational costs of management and administration, especially for assessment, qualifications and local accreditation.

Also the priority in most Third World countries is not for courses from high-level Stanford University professors, but for programs for elementary and high schools. Finally, while mobile phones are widespread in Africa, they operate on very narrow bandwidths. For instance, it costs US$2 to download a typical YouTube video – equivalent to a day’s salary for many Africans. Streamed 50 minute video lectures then have limited applicability.

This is not to say that MOOCs could not be valuable in Third World countries. They have features, such as integrated interaction, testing and feedback, and much lower cost, that make them a more powerful medium than educational broadcasting but they will still face the same challenges of educational broadcasting:

  • being realistic as to what they can actually deliver to countries with no or limited technology infrastructure
  • working in partnership with Third World educational institutions and systems and other partners
  • ensuring that the necessary local support – which costs real money – is put in place
  • adapting the design, content and delivery of MOOCs to the cultural and economic requirements of those countries.

Also, MOOCs need to be compared to other possible ways of delivering mass education in developing countries, within these parameters. The problem comes when it is argued that because MOOCs are open and free to end-users, they will inevitably force down the cost of conventional education, or eliminate the need for it altogether, especially in Third World countries.

Lastly, and very importantly, in many countries, all public education is already in essence open to all and in many cases free to those participating, if grants, endowments and other forms of state support to students are taken into account. MOOCs then will have to deliver the same quality or better at a lower price than public education if they are to replace it. I will return to this point later when I discuss their costs and the political and social issues around MOOCs.

2. The audience that MOOCs mainly serve

In a research report from Ho et al. (2014), researchers at Harvard University and MIT found that on the first 17 MOOCs offered through edX, 66 per cent of all participants, and 74 per cent of all who obtained a certificate, had a bachelor’s degree or above, 71 per cent were male, and the average age was 26. This and other studies also found that a high proportion of participants came from outside the USA, ranging from 40-60 per cent of all participants, indicating strong interest internationally in open access to high quality university teaching.

In a study based on over 80 interviews in 62 institutions ‘active in the MOOC space’, Hollands and Tirthali (2014), researchers at Columbia University Teachers’ College, concluded that:

Data from MOOC platforms indicate that MOOCs are providing educational opportunities to millions of individuals across the world. However, most MOOC participants are already well-educated and employed, and only a small fraction of them fully engages with the courses. Overall, the evidence suggests that MOOCs are currently falling far short of “democratizing” education and may, for now, be doing more to increase gaps in access to education than to diminish them.

Thus MOOCs, as is common with most forms of university continuing education, cater to the better educated, older and employed sectors of society.

3. Persistence and commitment

Hill (2013) identified five types of participants in Coursera courses:

© Phil Hill, 2013

© Phil Hill, 2013

The edX researchers (Ho et al., 2014) provided empirical support for Hill’s analysis. They identified different levels of commitment as follows across 17 edX MOOCs:

  • Only Registered: Registrants who never access the courseware (35%).
  • Only Viewed: Non-certified registrants who access the courseware, accessing less than half of the available chapters (56%).
  • Only Explored: Non-certified Registrants who access more than half of the available chapters in the courseware, but did not get a certificate (4%).
  • Certified: Registrants who earn a certificate in the course (5%).

Engle (2014) found similar patterns for the UBC MOOCs on Coursera (also replicated in other studies):

  • of those that initially sign up, between one third and a half do not participate in any other active way
  • of those that participate in at least one activity, between 5-10% go on to successfully complete a certificate

Those going on to achieve certificates usually are within the 5-10 per cent range of those that sign up and in the 10-20 per cent range for those who actively engaged with the MOOC at least once. Nevertheless, the numbers obtaining certificates are still large in absolute terms: over 43,000 across 17 courses on edX and 8,000 across four courses at UBC (between 2,000-2,500 certificates per course).

Milligan et al. (2013) found a similar pattern of commitment in cMOOCs, from interviewing a relatively small sample of participants (29 out of 2,300 registrants) about halfway through a cMOOC:

  • passive participants: in Milligan’s study these were those that felt lost in the MOOC and rarely but occasionally logged in.
  • lurkers: they were actively following the course but did not engage in any of the activities (these were just under half those interviewed)
  • active participants (again, just under half those interviewed) who were fully engaged in the course activities.

MOOC participation and persistence rates need to be judged for what they are, a somewhat unique – and valuable – form of non-formal education. Once again, these results are very similar to research into non-formal educational broadcasts (e.g. the History Channel). One would not expect a viewer to watch every episode of a History Channel series then take an exam at the end. Ho et al. (p.13) produced the following diagram to show the different levels of commitment to xMOOCs:

Ho et al., 2014

Ho et al., 2014

Now compare that to what I wrote in 1985 about educational broadcasting in Britain:

(p.99): At the centre of the onion is a small core of fully committed students who work through the whole course, and, where available, take an end-of-course assessment or examination. Around the small core will be a rather larger layer of students who do not take any examination but do enrol with a local class or correspondence school. There may be an even larger layer of students who, as well as watching and listening, also buy the accompanying textbook, but who do not enrol in any courses. Then, by far the largest group, are those that just watch or listen to the programmes. Even within this last group, there will be considerable variations, from those who watch or listen fairly regularly, to those, again a much larger number, who watch or listen to just one programme. 

I also wrote (p.100):

A sceptic may say that the only ones who can be said to have learned effectively are the tiny minority that worked right through the course and successfully took the final assessment…A counter argument would be that broadcasting can be considered successful if it merely attracts viewers or listeners who might otherwise have shown no interest in the topic; it is the numbers exposed to the material that matter…the key issue then is whether broadcasting does attract to education those who would not otherwise have been interested, or merely provides yet another opportunity for those who are already well educated…There is a good deal of evidence that it is still the better educated in Britain and Europe that make the most use of non-formal educational broadcasting.

Exactly the same could be said about MOOCs. In a digital age where easy and open access to new knowledge is critical for those working in knowledge-based industries, MOOCs will be one valuable source or means of accessing that knowledge. The issue is though whether there are more effective ways to do this.

Furthermore, percentages, completion and certification DO matter if MOOCs are being seen as a substitute or a replacement for formal education. Thus MOOCs are a useful – but not really revolutionary – contribution to non-formal continuing education. We need though to look at whether they can meet the demands of more formal education, in terms of ensuring as many students succeed as possible.

To come

I think that’s more than enough for today. In my next post, I will try to cover the following strengths and weaknesses of MOOCs:

4. What do participants learn in MOOCs?

5. Costs and economies of scale

6. Branding

7. Ethical issues

8. Meeting the needs of learners in a digital age.

I will probably then do another short post on:

a. The politico-economic context that drives the MOOC phenomena

b. a short summary.

Over to you

Remembering that this is less than half the section on strengths and weaknesses, and that the criterion I am using for this is the ability of MOOCs to meet the learning needs of a digital age:

1. Are these the right topics for assessing MOOC’s strengths and weaknesses?

2. Would you have discussed these three topics differently? Do you agree or disagree with my conclusions?

3. Is ‘the ability of MOOCs to meet the learning needs of a digital age’ a fair criterion and if not how should they be judged?

4. Is the educational broadcasting comparison fair or relevant?

References

Bates, A. (1985) Broadcasting in Education: An Evaluation London: Constables

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

Friedland, T. (2013) Revolution hits the universities, New York Times, January 26

Hill, P. (2013) Some validation of MOOC student patterns graphic, e-Literate, August 30

Ho, A. et al. (2014) HarvardX and MITx: The First Year of Open Online Courses Fall 2012-Summer 2013 (HarvardX and MITx Working Paper No. 1), January 21

Hollands, F. and Tirthali, D. (2014) MOOCs: Expectations and Reality New York: Columbia University Teachers’ College, Center for Benefit-Cost Studies of Education, 211 pp

Milligan, C., Littlejohn, A. and Margaryan, A. (2013) Patterns of engagement in connectivist MOOCs, Merlot Journal of Online Learning and Teaching, Vol. 9, No. 2

Yousef, A. et al. (2014) MOOCs: A Review of the State-of-the-Art Proceedings of 6th International Conference on Computer Supported Education – CSEDU 2014, Barcelona, Spain

What UBC has learned about doing MOOCs

Listen with webReader

Coursera certificate 2

Engle, W. (2104) UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

The University of British Columbia, a premier public research university in Canada, successfully delivered five MOOCs in the spring and summer of 2013, using the Coursera platform. This report is an evaluation of the experience.

The report is particularly valuable because it provides details of course development and delivery, including media used and costs. Also UBC has been developing online courses for credit for almost 20 years, so it is interesting to see how this has impacted on the design of their MOOCs.

The MOOCs

1. Game Theory I: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

2. Game Theory II: K. Leyton Brown (UBC); M. Jackson and Y.Shoham (Stanford University)

3. Useful Genetics: R. Redfield, UBC

4. Climate Literacy: S. Harris and S. Burch, UBC

5. Introduction to Systematic Program Design: G. Kizcales, UBC

In terms of comparability I’m going to treat Game Theory I and II as one MOOC, as combined they were about the same length as the other MOOCs (between 8-12 weeks)

Basic statistics

330,150 signed up (82,500 on average per course)

164,935 logged in at least once (41,000 per course)

12,031 took final exam (3,000 per course)

8,174 earned course certificate (2,000 per course)

60-70% already had a post-secondary degree

30-40% were North American, with participants from nearly every country in the world.

Course development

None of the instructors had taught an online course before, but were supported by instructional designers, media development staff, and academic assistants (graduate and undergraduate students).

One major difference between UBC MOOCs and its online credit courses (which are primarily LMS-based) was the extensive use of video, the main component of the MOOC pilot courses.

Video production

305 videos constituting a total of 65 hours were produced. Each MOOC used a different method of production:

  • Intensive studio (Climate Literacy)
  • Hybrid studio plus instructor desktop (Systematic Program Design)
  • Light studio production (Game Theory I and II)
  • Instructor desktop (Useful Genetics)

Web pages

All the MOOCs except Games Theory also included weekly modules as HTML-based web pages, which is a variation of the Coursera design default model. Altogether 98 HTML module pages were developed. The weekly modules were used to provide guidance to students on learning goals, amount of work expected, an overview of activities, and additional quiz or assignment help. (All standard practice in UBC’s LMS-based credit courses.)

Assessment

1,049 quiz questions were developed, of which just over half were graded.

There were four peer assessments in total across all the MOOCs.

Course delivery

As well as the faculty member responsible for each MOOC, graduate and undergraduate academic assistants were a crucial component of all courses, with the following responsibilities:

  • directly assisting learners
  • troubleshooting technical problems
  • conducting quality assurance activities

There was very little one-on-one interaction between the main instructor and learners, but academic assistants monitored and moderated the online forum discussions.

Costs

As always, costing is a difficult exercise. Appendix B of the report gives a pilot total of $217,657, but this excludes academic assistance or, perhaps the most significant cost, instructor time.

Working from the video production costs ($95,350) and the proportion of costs (44%) devoted to video production in Figure 1 in the report, I estimate the direct cost at $216,700, or approximately $54,000 per MOOC, excluding faculty time and co-ordination support, but including academic assistance.

However, the range of cost is almost as important. The video production costs for Climate Literacy, which used intensive studio production, were more than six times the video production costs of Systematic Program Design (hybrid studio + desktop).

MOOCs as OERs

  • the UBC instructors are using their MOOC materials in their own on-campus, for-credit classes in a flipped classroom model
  • courses are left open and active on Coursera for self-paced learning
  • porting of video materials as open access YouTube videos
  • two courses (Climate Literacy and Useful Genetics) added Creative Commons licenses for re-use

Challenges

  • copyright clearance (Coursera owns the copyright so third party copyright needs to be cleared)
  • higher than expected time demands on all involved
  • iterative upgrades to the Coursera platform
  • partner relationship management (UBC + Coursera + Stanford University) was time-consuming.
  • training and managing academic assistants, especially time management
  • the Coursera platform limited instructors’ ability to develop desired course activities
  • Coursera’s peer assessment functionality in particular was limiting

Lessons

  • UBC’s prior experience in credit-based online learning led to better-designed, more interactive and more engaging MOOCs
  • learners always responded positively to instructor ‘presence’ in forums or course announcements
  • MOOC students were motivated by grades
  • MOOC students were willing to critically engage in critiquing instructors’ expertise and teaching
  • open publishing via MOOCs is a strong motivator for instructors
  • MOOCs require significant investment.

Conclusion

All the MOOCs received positive feedback and comments from students. UBC was able to gain direct experience in and knowledge of MOOCs and look at how this might inform both their for-credit on-campus and online teaching. UBC was also able to bring its experience in for-credit online learning to strengthening the design of MOOCs. Lastly it was able to make much more widely known the quality of UBC instructors and course materials.

Comment

First, congratulations to UBC for

  • experimenting with MOOCs
  • conducting the evaluation
  • making the report publicly available.

It is clear from the comments of participants in the appendices that at least some of the participants (we don’t know how many) were very pleased with the courses. As usual though with evaluation reports on MOOCs, there is no assessment of learning other than the end of course quiz-based tests. I don’t care too much about completion rates, but some measurement of student satisfaction would have been helpful.

It is also significant that UBC has now decided to move from Coursera to edX as its platform for MOOCs. edX, which is open source and allows partners to modify and adapt the platform, provides the flexibility that Coursera lacked, despite its many iterative ‘improvements’.

This also demonstrates the hubris of MOOC platform developers in ignoring best design principles in online learning when they designed their platforms. It is clear that UBC designers were able to improve the design of their MOOCs by drawing on prior for-credit online experience, but also that the MOOC platforms are still very limited in enabling the kind of learning activities that lead to student engagement and success.

The UBC report also highlighted the importance (and cost) of providing some form of learner support in course delivery. The use of academic assistants in particular clearly made the MOOCs more interactive and engaging, as well as limited but effective interventions from the instructors themselves, once again supported by (and confirming) prior research on the importance of instructor presence for successful for-credit online learning.

I very much appreciate the cost data provided by UBC, and the breakdown of production and delivery costs is extremely valuable, but I have to challenge the idea of providing any costs that exclude the time of the instructors. This is by far the largest and most important cost in MOOCs and the notion that MOOCs are free of instructor cost is to fly in the face of any respectable form of economics.

It is clear that MOOCs are more expensive to date per hour of study time than LMS-based for-credit online courses. We still do not have enough data to give a precise figure, and in any case, as the UBC study shows, cost is very much a factor of design. However, even without instructors costs, the UBC MOOCs at $54,000 each for between 8-12 weeks are already more than the average cost of a 13 week for-credit LMS-based online course, including instructor time.

This is partly due to the increased instructor time in preparation/production, but also to the higher cost of video production.  I am not against the use of video in principle, but it must add value. Using it for content transmission when this can be done so much more cheaply textually and/or by audio is a waste of the medium’s potential (although perhaps more motivating for the instructor).

More importantly, every institution contemplating MOOCs needs to do a cost-benefit exercise. Is it better to invest in MOOCs or credit-based online learning or both? If MOOCs are more expensive, what are the added benefits they provide and does this more than make up for not only the extra cost, but the lost opportunity of investing in (more) credit-based online learning or other forms of campus-based learning? I know what my answer would be.

 

2020 Vision: Outlook for online learning in 2014 and way beyond

Listen with webReader

 2020 visionTaking the long view

Doug Saunders in the Globe and Mail on  January 4 wrote an interesting piece on prediction, entitled: “Gadgets alone don’t make the future.” Having shown how amazingly accurate technologists in 1961 were in predicting what technologies would roll out in the future, he also showed how poorly they predicted how these gadgets would impact on our lives. In summary:

‘We are very good at guessing where our inventions might lead. We are very poor in understanding how humans might change their lives….the decision of what kind of life to live between the screens remains a political one, shaped not by our inventions but by our own decisions.’

Last year I spent some time discussing the value of predictions. One point I didn’t mention is the limitation of predicting just one year ahead, because you can’t identify the long term directions, and so often you’re driven by what happened in the very recent past, i.e. last year, because that’s the latest and often only data you have. More importantly, though, looking one year ahead assumes that there is no choice in what technologies we will use and how we will use them, because they are already entering our society. Also, this is likely to be the last year in which I make predictions for the future. I will be 75 in April, and I plan to stop all paid professional activities at that point (although I will keep my blog, but more as a journalist than as a practitioner).

So this seems to be a good point to look not just at 2014, but where we might be going five to ten years from now, and in doing this, I want to include choice or human decision-making as well as technological determinism. In other words, what kind of online learning do I expect in the future, given what I know so far?

The disappearance of online learning as a separate construct

In 2020, people won’t be talking about online learning as such. It will be so integrated with teaching and learning that it will be like talking today about whether we should use classrooms. In fact, we may be talking much more about classrooms or the campus experience in 2020, because of online learning, and how it is changing the whole way that students are learning. There is likely to be heated discussions about the role and purpose of campuses and school buildings, the design of classrooms, and who needs to be there (teachers and students) and more importantly what for, when students can do so much of their learning online – and generally prefer to, because of the flexibility, and of their control over their own learning. The big changes then are likely to be on-campus, rather than on-line.

Steelcase Node Classroom

Steelcase Node Classroom

Multi-mode delivery concentrated in fewer institutions – but more diversity

Quite a few public and smaller private post-secondary institutions will be gone or radically transformed by 2020. Particularly at risk are smaller, low status state or provincial universities and colleges or their campuses in metropolitan areas, where there is local and regional competition for students. They will have lost students to more prestigious universities and high status vocationally oriented institutions using online and flexible learning to boost their numbers. Government will be increasingly reluctant to build new campuses, looking to more flexible and more cost effective online delivery options to accommodate increasing demand. Nevertheless, politics will occasionally trump economics, with small new universities and colleges still being created in smaller towns away from the larger urban areas. Even these though will have much smaller campuses than today and probably as much as 50% of all course enrollments online, often in partnership with more established and prestigious universities through course sharing and credit transfer.

Those institutions that have survived will be offering students a range of choices of how they can access learning. Courses or programs will be deliberately designed to accommodate flexibility of access. Thus students will be able to decide whether to do all their studying on campus, all of it online, or a mix of both, although courses or programs are likely to have a common assessment strategy (see below). This will not be driven so much by academic or even political decisions, but by students voting with their feet (or mouses) to study at those institutions that provide such flexibility.

Multi-purpose, open delivery, with multiple levels of service and fees

Content will be multi-purposed, depending on a learner’s goals. Thus the same content can be part of a credit-based degree-level course, program or competency, part of a non-credit certificate or diploma, or available as open access. Learners will also be able to choose from a range of different course or program components, dependent on their needs and interests. Because most content will be open and modular, in the form of open textbooks, open multimedia resources, and open research, institutions will offer a variety of templates for courses and programs built around open content. For example, for a degree in physics, certain topics must be covered, with a strong recommendation for the sequence of study, but within those core levels of competency, there will be a variety of routes or electives towards a final degree, where broadly based learning outcomes are set, but multiple routes are offered for progress to these outcomes. Those content components can be accessed from a wide range of approved sources. It is the competency and academic performance of the learner that the institution will accredit.

Most institutions will have an open education portal, that contains not only a wide range of open educational resources, but also a range of open services, such as program templates or free academic guidance for specific target groups, as part of their enrollment strategy. Although such portals are likely to include materials from a wide range of sources from around the world, special emphasis will be given to open content developed by their own faculty, based on their latest research or scholarship, as a way of branding their institution. iTunesU, MIT’s Opencourseware, OpenLearn, and MOOCs are early prototypes, but content quality in the future will be greatly improved in terms of pedagogical and media design to accommodate online learners. Also states and provinces will also establish system-wide portals of open educational resources, particularly at the k-12 and two year college level (see eLearnPunjab and open.bccampus.ca as prototype models).

Because academic content is almost all open, free and easily accessible over the Internet, students will not pay tuition fees for content delivery, but for services such as academic guidance and learning support, and these fees will vary depending on the level of service required. Thus students who want a traditional course that covers guidance on and access to content, tutorial help, access to campus facilities, feedback and assessment will pay full fee (some of which may still be government subsidized in the public system). Students who want just open access will pay nothing, but will get few if any support services, and if they need a formal assessment, they will need to pay for this (although again this may be subsidized in a public system). Other students may want feedback and some form of continuous assessment, but will not want to pay for full tutorial support.

There are several consequences of this increased flexibility. Some institutions will specialize in small-class, on-campus education at high cost. Others will focus on high quality delivery through a variety of delivery modes, with a particular emphasis on course design and learner support. Some institutions will focus on low cost, competency-based open access programs, supported by businesses requiring specific skilled labour, and a few institutions will be specialists in fully online distance delivery operating on a national or international basis, at a lower cost but equally high quality as campus-based institutions. The majority of institutions though will become multi-purpose, multiple delivery institutions because of the economies of scale and scope possible.

Goodbye to the lecture-based course

In most institutions, courses based on three lectures a week over 13 weeks will have disappeared. There are several reasons for this. The first is that all content can be easily digitalized and made available on demand at very low cost. Second, institutions will be making greater use of dynamic video (not talking heads) for demonstration, simulations, animations, etc. Thus most content modules will be multi-media. Third, open textbooks incorporating multi media components and student activities will provide the content, organization and interpretation that are the rationale for most lectures. Lastly, and most significantly, the priority for teaching will have changed from information transmission and organization to knowledge management, where students have the responsibility for finding, analyzing, evaluating, sharing and applying knowledge, under the direction of a skilled subject expert. Project-based learning, collaborative learning and situated or experiential learning will become much more widely prevalent. Also many instructors will prefer to use the time they would have spent on a series of  lectures in providing more direct, individual and group learner support, thus bringing them into closer contact with learners.

This does not mean that lectures will disappear altogether, but they will be special events, and probably multi-media, synchronously and asynchronously delivered. Special events might include a professor’s summary of his latest research, the introduction to a course, a point mid-way through a course for taking stock and dealing with common difficulties, or the wrap-up to a course. It will provide a chance for an instructor to makes themselves known, to impart their interests and enthusiasm, and to motivate learners, but this will be just one, relatively small, but important component of a much broader learning experience for students.

61730023

Goodbye to the written exam – and welcome to the final implementation of lifelong learning

For most post-secondary qualifications, written exams will have been replaced by assessment through multimedia portfolios of student work. These will show not only students’ current knowledge and competencies, but also their progression over time, and a range of equally important skills, such as their ability to work collaboratively, self-management of learning, and general communication skills. Assessment will be mainly on a continuous, on-going basis.

As well as change in the method of assessing learning there will be greater variety in the range of accredited qualifications. Degrees, certificates and diplomas will still be important, but these will be complemented with a wide range of assessments of informal or non-formal learning, such as badges, some offered by post-secondary institutions, others offered by employers’ organizations or co-operatives of professionals. University and college diplomas and degrees will increasingly be seen as milestones on the journey to lifelong learning, and for demographic and economic reasons, the lifelong learning market will become a much larger market than the high school leaver market.

This means academic departments will need to develop programs and courses that range from introductory or foundational through undergraduate degrees to professional masters to lifelong learning, again using similar content modules adapted to different markets, as well as creating or adapting new content, based on the latest research in a field, for these newer markets. Much of the lifelong market will lend itself to online and hybrid learning, but in different structures (short modules, for instance) than the undergraduate and higher degree market. Universities and colleges will increasingly compete with the corporate training industry for these post-postgraduate learners, who will be able and willing to afford top dollar for top-level lifelong learning opportunities, based on the latest research coming out of universities, government and businesses.

However, a large part of the lifelong learning market will become occupied by communities of practice and self-learning, through collaborative learning, sharing of knowledge and experience, and crowd-sourcing new ideas and development, particularly assisted by an evolution of what are now known as cMOOCs. Such informal learning provision will be particularly valuable for non-governmental or charitable organizations, such as the Red Cross, Greenpeace or UNICEF, or local government, looking for ways to engage communities in their areas of operation. These communities of learners will be open and free, and hence will provide a competitive alternative to the high priced lifelong learning programs being offered by research universities. This will put pressure on universities and colleges to provide more flexible arrangements for recognition of informal learning, in order to hold on to their current monopoly of post-secondary accreditation.

Image: © Etienne Wenger, 2010

Image: © Etienne Wenger, 2010

New financial models

Because most content will be freely accessible, and because students will pay incrementally for a wide variety of services, new financial models will need to be developed, to support the flexibility and range of services that students will increasingly demand and require. The biggest move is likely to be away from block funding or enrollment-driven funding by government towards pay-for-service through student fees for teaching. There will be further separation of the funding for research and teaching (this has already happened in some countries, such as in England and Wales.) As a result government financing may well change, so that students are given a post-secondary grant at the age of 17, and have the right to decide how to spend that grant on post-secondary education, rather than funding institutions directly for teaching.

This may have some unexpected benefits for academic departments. Under this model it makes much more sense to fund programs directly from fees for the program, than to pool grants and fees centrally then break out money for teaching and filter it down through the departments. Thus program fees or service fees  would come to academic departments (or more accurately the program areas) directly, then the programs would pay for university services such as registration and financial services on a direct cost basis, plus a percentage for general overheads. This is already happening in some public universities at post-graduate levels, where tuition fees for online professional masters more than cover all the costs, direct and indirect, of a program, including the cost of full-time research professors who teach on the program.

This model would also have two other benefits. It would put pressure on service departments, such as HR, financial services, the Registry, etc., to become more cost-efficient, because direct costs to programs become more transparent. Second, since online students do not need a range of campus services such as campus building maintenance, lighting, and heating, it would lead to the different costs of online vs campus-teaching becoming more transparent and comparable, with an economic incentive to move more towards the most cost-efficient delivery model.

There are also disadvantages. Some model would be needed to support more expensive programs to deliver, or programs that are specialized but important in a university community. However, a program-based financial model may help save small departments who are struggling for minimal enrolments from their local market. Online courses can open the market to regional or international students and offer the chance of collaboration and partnership with other institutions, through course and student sharing.

The disaggregation of institutional activities required for the flexible delivery of programs in a world where content is free offers opportunities for rethinking how teaching and learning is funded.

Systematic faculty development and training

Since content will be freely accessible, institutions’ reputation and branding will increasingly depend on the way they support learners. This will put much greater emphasis on instructors having good teaching skills as well as subject expertise. Thus most universities and colleges will require faculty to have assessed teaching skills before tenure or permanent appointment, and equal attention will be given to teaching expertise as research in promotion. This will mean incorporating teaching practice and methods within most post-graduate subject areas, college instructors having compulsory pre-service teacher training, and regular faculty having systematic ongoing professional development as new technologies and new teaching approaches develop over time. The immediate benefit of this will be better student retention rates and higher quality learning outcomes.

Devolved decision-making and organizational models

A move to program-based funding, the need for effective course designs to attract students, the differentiation of services, the increased professionalism in teaching, and freely available open content will result in a move to systematic program planning and team teaching. A typical team will consist of a senior research professor, several junior or adjunct professors, an instructional designer/project manager and a media/web designer. The senior faculty member, in collaboration with the other team members, will be responsible for decisions about curriculum content, methods of learner support, and assessment standards. The team will develop assessment criteria and rubrics, and where necessary hire additional instructors for learner support and marking of assessments , under the supervision of the senior faculty members.

One consequence will be the disappearance of central centres for teaching and technology, except in small institutions. Instructional design staff will be located in program areas and will be responsible with academic faculty for faculty development activities, as well as with overall course design input. There will be increased demand for media designers, while instructional designers will be in less demand in the future, but still necessary to support faculty, especially as new learning technologies develop.

Student privacy, data security and student online behaviour will become more difficult

Learning will increasingly be delivered through student-owned devices, and learners will increasingly integrate social life, work and study in a seamless manner. Services will increasingly be delivered through the cloud. Security agencies, Internet-based companies and knowledge-based companies will constantly be seeking access to student data, especially student learning performance and online behaviour, as this information will be increasingly valuable for state security and commercial reasons. As a result it will become increasingly difficult for institutions to protect student data and their privacy. This may turn out to be the biggest challenge for students, institutions, and government in the next 20 years and could seriously inhibit the development of online learning in the future, if students or faculty lose trust in the system.

The future is about choices

This is my view about where we could be going with online learning in the next five to ten years. However, I will not be making the decisions, as I am retiring in April. If you do not like this vision, then you are in a position to influence a different kind of vision. Although as McLuhan says, we are shaped by our devices, we also shape the world around these devices. The worst thing we could do is to leave it to computer scientists to decide our future.

The value such a vision lies not in its detail, but in identifying some of the key choices or decisions that will need to be made. So here are the decisions that are thrown up by this vision for the future, for students, faculty, institutions and government (and some of these, such as those about campus facilities, should be being made right now):

Students and learners

  • at this point in my life, what are my learning goals? What is the best way to meet these? Where can I get advice for this?
  • do I need a qualification and if so, what kind?
  • what is the best way for me to access this learning? On-campus; online; or a mix of both?
  • what kind of learning support do I need?
  • how much do I want to – or must I – pay for these services?
  • what institution or other method of delivery will provide what I want? Where can I get independent advice on this?
  • how can I protect my privacy when I am online studying?

Faculty and instructors

  • why do students need to come to campus? What am I offering on-campus that they couldn’t get online? Have I looked up the research on this?
  • what teaching methods will lead to the kind of learning outcomes that students will need in life?
  • what should be my role if content is freely available online?
  • what kind of teaching spaces do I need for what I want to offer on campus?
  • how should I best use my time in teaching? In what kind of teaching activities can I really make a difference for students?
  • if I create new or original content for my teaching, should I make it openly available to anyone to use?
  • what methods of assessment should I use in a digital age? How do I assess prior or informal learning?
  • what kind of courses or programs should we be offering for lifelong learners?
  • what do I need to know about student data, and the protection of student privacy?
  • what training or professional development do I need to ensure that I can meet the learning needs of my students?

Institutions

  • what kind of campus will we need in 10 years time?
  • what proportion of course enrollments are likely to be accessed off-campus?
  • what will be the best way to accommodate more students – online learning or more buildings?
  • what kind and number of teaching spaces will we need?
  • what partnerships or strategies should we adopt to protect our enrollment base?
  • what are our strategies and policies regarding open educational resources?
  • what is our strategy for lifelong learning?
  • what financial models should we put in place to encourage innovation in teaching and to attract students?
  • how do we ensure that faculty have the skills necessary for teaching in a digital age?
  • how can we best reward innovation and high quality teaching?
  • what kind of organization and staff do we need to support faculty in their teaching?
  • how do we best protect student data and privacy (as well as our staff’s) in a digital age?

Government

  • what kind of post-secondary system, in terms of institutional differentiation, program delivery and innovations in teaching, do we need in a digital age?
  • how many, and what kind of, campuses do we need when students are also studying online? What is the best way to accommodate expansion in the system?
  • how can we best support system-wide open education, to reduce costs and increase quality?
  • how should we fund post-secondary education in a digital age? How much and what should ‘first-time’ students pay for themselves? What should lifelong learners who have already been through the system pay? What funding models would encourage innovation in teaching and help improve quality?
  • how can online learning help to increase the productivity of the post-secondary educational system? What can we do to encourage this?
  • what does government need to do to protect student data and student privacy?

What’s YOUR vision?

I won’t be around to make or influence these decisions, but most of you will. Are there decisions I’ve missed? What decisions would you make? What’s your vision for the future?

If you are willing to share just one response to any of these questions or decisions, this will be very much appreciated. Because the future will be increasingly about sharing knowledge.

University of Florida Online launches first undergraduate programs this month

Listen with webReader

UF Online

Moran, C. (2013) UF expands opportunities for four-year degrees UF News, September 27

State University System of Florida (2013) UF Online Comprehensive Business Plan, 2013-2019 Gainsville, FL: State University System of Florida Board of Governors

What is being offered?

The University of Florida at Gainsville, part of the Florida State University System, is offering the first courses this month in the state’s first fully online four-year bachelor’s degree programs. UF Online classes start in January for those completing a bachelor’s degree. The first freshmen courses start in August (enrolment is now open).

UF Online starts in January with five majors:

  • Business administration
  • Criminology and law
  • Environmental management
  • Health education and behavior
  • Sport management

Two more majors will be added in June: biology and psychology. UF Online plans to grow the program to 35 majors by 2019. Students enrolling as freshmen will be able to complete the whole degree program online.

In many cases online courses will be exactly the same in content as the on-campus versions, with a special online section designated for UF Online students. Online and on campus students will take the same exams.

UF Online courses will be exclusively online, so no “blended” program options will be offered except in those cases where a clinical or lab course is required. Thus students have to make a choice: online or on-campus.

What problem is this solving?

Until now, student access to UF has been limited by the difference between supply and demand. Because the UF campus is filled to capacity, the number of freshmen enrolling each year has remained steady at about 6,400. Since the turn of the millennium, though, the annual number of applicants has surged nearly 60 percent to more than 29,000. UF has had to turn away thousands of students who meet admissions criteria. There will no longer be a limit to the size of the freshman class at the University of Florida. The State University System’s first fully online bachelor’s degree programs will place a UF education within reach of any first-time-in-college student who qualifies for admission.

Course and faculty development

Online courses will be developed by a team of content experts and creative professionals that include faculty, instructional designers (IDs), librarians, videographers, graphic designers, and programmers, using the ADDIE model.

UF Online faculty will be required to participate in the University of Florida Faculty Institute. This online workshop takes approximately 7-10 hours and walks faculty through the course design process. Emphasis is placed upon pedagogy rather than technology. Additional development opportunities will be available to the UF Online faculty and teaching assistants.

More details, including quality assurance methods and choice of LMSs (Canvas or Sakai) are contained in the Comprehensive Business Plan

Learner support

The university is developing an orientation specifically for online students. UF is expanding its academic advising and career services, and is expanding its counseling resources to best serve distance students.

Costs for students

The state legislature caps online tuition for in-state students at 75 percent of the price of on-campus classes. Out-of-state students will pay market rates. In-state online students will not only save on tuition, but they also will be exempt from many on-campus fees. In addition, the university estimates that students will save an estimated $8,400 a year in room and board costs they would incur if they moved to Gainesville (presumably, parents will now be expected to pick up the room and board costs, as even online students have to eat and sleep somewhere.)

The cost for the state

The state legislature is providing UF Online with $15 million in start-up costs for one year year, then $5 million annually.

Comments

Good for Florida. Florida’s higher education system has long been a leader in educational technologies.  Robert Gagné and his colleagues at Florida State University were pioneers in educational research and design. The University of Central Florida has long been a leader in hybrid and blended learning. The University of Florida has one of the highest reputations for state universities in the USA and also has a long history of quality online programs mainly at graduate level. Now this new initiative opens up undergraduate university education to anyone that meets the qualifications for entry to the state higher education system.

Note though that at least initially UF Online is focusing on established best practices in online learning, based particularly on the ADDIE model and LMSs. It will be interesting to see if UF Online becomes more adventurous with social media and open educational resources as it becomes more established.

It will also be interesting to see what kind of students opt for the online programs, and how the university will decide on which students will get campus courses and which online. Will for instance the students with the highest qualifications opt for campus-based courses and what will that do for the reputation of the online programs?

In the meantime, I wish every success to this initiative. It is a good example of how online learning can increase productivity by opening up access without major capital costs, and by reducing costs to students. It also appears to be a model that is reproducible if successful for other states and post-secondary educational jurisdictions, so it is well worth watching how it develops. What a good way to start the new year.

The cost of being a student in Canada – and where to find online courses

Listen with webReader

The Cost of Being a Student in Canada

vouchercloud is a Canadian discount coupon website and they have just launched a selection of student specific coupons. They have produced the above infographic focusing on the cost of being a student in Canada. (Note the date: fees change over time).

My advice for Canadian students: shop around for online programs from established and recognized Canadian universities and colleges, even if they are out of province. For instance, some high quality professional online masters programs can be found at less than these prices, although finding fully online undergraduate programs at a lower cost will be more difficult.

Athabasca University, in Alberta, and Thompson Rivers University’s Open Learning in British Columbia offer both undergraduate and graduate programs online. Royal Roads University in British Columbia offers mainly masters programs online, with a residential component. None of these universities requires you to be resident within their province.

For students in Ontario, try Contact North’s Ontario Online Learning Portal for Students

For students in Alberta, try: e-Campus Alberta

For students in British Columbia, try: CoursesBC (note: shows only courses, not programs)

For Manitoba, try: Campus Manitoba

Québec is a bit more complicated, but if you are francophone, try REFAD’s liste de cours à distance en français au Canada.

Other provinces are small enough that it’s not difficult to check with each institution. For instance, both Nova Scotia Community College and New Brunswick Community College have their own portals for online courses, but Nova Scotia’s universities (and there are quite a few) do not yet have a single portal.

However, not all institutions list their online and distance courses/programs on these portals (although most two-year colleges do), so you should also check with individual institutions, using ‘online courses’ or ‘distance education’ as search terms. In most cases, institutions in Canada charge the same fee for online as for campus courses/programs – but not always, so check.

Also check on the ability to transfer credits and qualifications across provinces, if you register for an ‘out-of-province’ course or program. Ontario can be particularly difficult about transferring in qualifications from other provinces – or even between institutions within Ontario. Alberta and British Columbia on the other hand have extensive credit transfer arrangements between their institutions.

Lastly, if you don’t want a full degree, look at the online programs being offered as certificates or diplomas from the Continuing Education or Extension departments of the individual institutions. These are more ‘open’ than the undergraduate and masters programs, although they are not always cheaper. Also, the University of British Columbia, the University of Alberta, and the University of Toronto offer a small number of MOOCs (massive open online courses) for free, but these are not for credit.

If you are a student outside Canada, you are likely to be charged a great deal more for taking online programs that lead to degree qualifications than Canadian students, and may not be accepted – this will depend on your other qualifications. You will need to contact the Registrar at each institution. And do not ask me to recommend an individual university or college in Canada. If it’s a public university funded by the provincial government – and this covers most universities in Canada – it will be reputable.

Lastly, have I missed any province or territory’s online portal? If so, let me know.

Also, let me know your experience in trying to find online courses or programs in Canada.

Perhaps in time, there will be a one-stop shopping portal for all Canadian online courses from public universities and colleges, but it’s a federal system where provinces have complete autonomy regarding post-secondary education, so don’t hold your breath.