September 3, 2015

Ease of use as a criterion for technology selection in online learning

Listen with webReader
Image: © Daily Express, 2012

Reliability is important! Image: © Daily Express, 2012

I felt myself cringing as I wrote this section for my book on ‘Teaching in a Digital Age’. Talk about do what I say and not what I do, especially the part about spending a small amount of time in properly learning about a technology before using it. I was almost half way through writing this book, before I worked out that ‘Parts’ were in fact introductions to ‘Chapters’ and ‘Chapters’ really were sections of chapters, in Pressbook terminology. I also didn’t work out until this week how to actually publish it once it was available in html format.  Oh, that’s what this button is for!

However, ease of use is a critical criterion for media selection. Who wants to spend hours fiddling with the technology when teaching or learning, unless you’re a geek or a computer scientist? ‘Transparency’ is the key word. So here’s my contribution, under the letter ‘E’ in the SECTIONS model.

9.3 The SECTIONS Model: Ease of Use

In most cases, the use of technology in teaching is a means, not an end. Therefore it is important that students and teachers do not have to spend a great deal of time on learning how to use educational technologies, or on making the technologies work. The exceptions of course are where technology is the area of study, such as computer science or engineering, or where learning the use of software tools is critical for some aspects of the curriculum, for instance computer-aided design in architecture, spreadsheets in business studies, and geographical information systems in geology. In most cases, though, the aim of the study is not to learn how to use a particular piece of educational technology, but the study of history, mathematics, or biology.

Computer and information literacy

If a great deal of time has to be spent by the students and teachers in learning how to use for instance software for the development or delivery of course material, this distracts from the learning and teaching. Of course, there is a basic set of literacy skills that will be required, such as the ability to read and write, to use a keyboard, to use word processing software, to navigate the Internet and use Internet software, and increasingly to use mobile devices. These generic skills though could be considered pre-requisites. If students have not adequately developed these skills in school, then an institution might provide preparatory courses for students on these topics.

It will make life a lot easier for both teachers and students if an institution has strategies for supporting students’ use of digital media. For instance, at the University of British Columbia, the Digital Tattoo project prepares students for learning online in a number of ways:

  • introducing students to a range of technologies that could be used for their learning, such as learning management systems, open educational resources, MOOCs and e-portfolios
  • explaining what’s involved in studying online or at a distance
  • setting out the opportunities and risks of social media
  • advice on how to protect their privacy
  • advice on how to make the most of connecting, networking and online searching
  • how to prevent cyberbullying
  • maintaining a professional online presence.

If your institution does not have something similar, then you could direct your students to the Digital Tattoo site, which is fully open and available to anyone to use.

It is not only students though who may need prior preparation. Technology can be too seductive. You can start using it without fully understanding its structure or how it works. Even a short period of training – an hour or less – on how to use common technologies such as a learning management system or lecture capture could save you a lot of time and more importantly, enable you to see the potential value of all features and not just those that you stumble across.

Orientation

A useful standard or criterion for the selection of course media or software is that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on. This 20 minutes may be needed to work out some of the key functions of the software that may be unfamiliar, or to work out how the course Web site is organized and navigated. This is more of an orientation period though than learning new skills of computing.

If we do need to introduce new software that may take a little time to learn, for instance, a synchronous ‘chat’ facility, or video streaming, it should be introduced at the point where it is needed. It is important though to provide time within the course for the students to learn how to do this.

Interface design

The critical factor in making technology transparent is the design of the interface between the user and the machine. Thus an educational program or indeed any Web site should be well structured, intuitive for the user to use, and easy to navigate.

Interface design is a highly skilled profession, and is based on a combination of scientific research into how humans learn, an understanding of how operating software works, and good training in graphic design. This is one reason why it is often wise to use software or tools that have been well established in education, because these have been tested and been found to work well.

The traditional generic interface of computers – a keyboard, mouse, and graphic user interface of windows and pull-down menus and pop-up instructions – is still extremely crude, and not isomorphic with most people’s preferences for processing information. It places very heavy emphasis on literacy skills and a preference for visual learning. This can cause major difficulties for students with certain disabilities, such as dyslexia or poor eyesight. However, in recent years, interfaces have started to become more user friendly, with touch screen and voice activated interfaces.

Nevertheless a great deal of effort often has to go into the adaptation of existing computer or mobile interfaces to make them easy to use in an educational context. The Web is just as much a prisoner of the general computer interface as any other software environment, and the educational potential of any Web site is also restricted by its algorithmic or tree-like structure. For instance, it does not always suit the inherent structure of some subject areas, or the preferred way of learning of some students.

There are several consequences of these interface limitations for teachers in higher education:

  • it is really important to choose teaching software or other technologies that are intuitively easy to use, both by the students in particular, but also for the teacher in creating materials and interacting with students;
  • when creating materials for teaching, the teacher needs to be aware of the issues concerning navigation of the materials and screen lay-out and graphics. While it is possible to add stimulating features such as audio and animated graphics, this comes at the cost of bandwidth. Such features should be added only where they serve a useful educational function, as slow delivery of materials is extremely frustrating for learners, who will normally have slower Internet access that the teacher creating the materials. Furthermore, web-based layout on desktop or laptop computers does not automatically transfer to the same dimensions or configurations on mobile devices, and mobile devices have a wide range of standards, depending on the device. Given that the design of Web-based materials requires a high level of specialized interface design skill, it is preferable to seek specialist help, especially if you want to use software or media that are not standard, institutionally supported tools. This is particularly important when thinking of using new mobile apps, for instance;
  • third, we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices. Changes in basic computer interface design could have as profound an impact on the use of technology in teaching as the Internet has.

Reliability

The reliability and robustness of the technology is also critical. Most of us will have had the frustration of losing work when our word programming software crashes or working ‘in the cloud’ and being logged off in the middle of a piece of writing. The last thing you want as a teacher or instructor is lots of calls from students saying they cannot get online access, or that their computer keeps crashing (if the software locks up one machine, it will probably lock up all the others!). Technical support can be a huge cost, not just in paying technical staff to deal with service calls, but also in lost time of students and teachers.

This means that you do not want to be at the ‘bleeding’ edge in your choice of technology, if it is to be used in any significant and regular form of teaching. It is best to wait for at least a year for new apps or software to be fully tested before adopting them. It is wise then not to rush in and buy the latest software up-date or new product – wait for the bugs to be ironed out.  Also if you plan to use a new app or technology that is not generally supported by the institution, check first with IT services to ensure there are not security, privacy or institutional bandwidth issues.

A feature of online learning is that peak use tends to fall outside normal office hours. Thus it is really important that your course materials sit on a reliable server with high-speed access and 24 hour, seven days a week reliability, with automatic back-up on a separate, independent server located in a different building. Ideally, the servers should be in a secure area (with for instance emergency electricity supply) with 24 hour technical support, which probably means locating your servers with central IT services. Increasingly online learning materials and courses are being located ‘in the cloud’, which means it is all the more important to ensure that materials are safely and independently backed up.

However, the good news is that most commercial educational software products such as learning management systems and lecture capture, as well as servers, are very reliable. Open source software too is usually reliable but probably slightly more at risk of technical failure or security breaches. If you have good IT support, you should receive very few calls from students on technical matters. The main technical issue that faculty face these days appears to be software up-grades to learning management systems. This often means moving course materials from one version of the software to the new version. This can be costly and time-consuming, particularly if the new version is substantially different from the previous version. Overall, though, reliability should not be an issue.

In summary, ease of use requires professionally designed commercial or open source course software, specialized help in graphics, navigation and screen design for your course materials, and strong technical support for server and software management and maintenance. Certainly in North America, most institutions now provide IT and other services focused specifically on supporting technology-based teaching. However, without such professional support, a great deal of your time as a teacher will be spent on technical issues, and to be blunt, if you do not have easy and convenient access to such support, you would be wise not to get heavily committed to technology-based teaching until that support is available.

Questions for consideration

Some of the questions then that you need to consider are:

  1. How intuitively easy to use is the technology you are considering, both by students and by yourself?
  1. How reliable is the technology?
  1. How easy is it to maintain and up-grade the technology?
  1. The company that is providing the critical hardware or software you are using: is it a stable company that is not likely to go out of business in the next year or two, or is it a new start-up? What strategies are in place to secure any digital teaching materials you create should the organisation providing the software or service cease to exist?
  1. Do you have adequate technical and professional support, both in terms of the technology and with respect to the design of materials?

Feedback

  1. I guess my main concern with this section is whether it is still needed these days. Most institutions, at least in Canadian post-secondary education, have moved in recent years to make sure there is professional IT support for technology for teaching as well as for communications and administration. Much of the newer technologies, such as apps, use relatively simple programming and hence tend to be much more reliable. Some advances have been made in interface design. Faculty themselves have become more tech savvy and learners of course have grown up using digital technologies. Does this all make ‘Ease of Use’ as a criterion redundant now? If not, is this section far too cautious? Should I be encouraging faculty to take more risks?
  2. Is the criterion that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on a valid and useful criterion when selecting a platform for teaching and learning?
  3. I actually wrote ‘we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices‘ in 2003 (Bates and Poole, 2003). Here we are 11 years later. Will things still be the same in another 11 years time – or will real progress be made in the next few years in interface design? Is Siri the future?
  4. you do not want to be at the ‘bleeding’ edge in your choice of technology’. Do you agree?
  5. Any other comments? In particular do you have examples of good practice that could strengthen this section that I could use?

Up next

Cost as a criterion for media selection. This one will be fun.

Students as a criterion for media selection in online learning

Listen with webReader
The Malaysian Ministry of Education announced that it will enable students to bring handphones to schools under strict guidelines Image: © NewStraightsTimes, 2015

The Malaysian Ministry of Education announced in 2012 that it will enable students to bring handphones to schools under strict guidelines
Image: © NewStraightsTimes, 2012

Decisions are being made every day by government, institutions, teachers and students about technology use in education. How are these decisions made? What criteria are used?

In my open textbook, Teaching in a Digital Age, I am suggesting using the SECTIONS model for media selection based on an examination of the following criteria:

  • tudents
  • E ase of use
  • osts
  • eaching functions
  • I nteraction
  • rganisational issues and Open-ness
  • etworking and Novelty
  • peed and Security.

Here is my first draft on questions about students and their needs:

At least three issues related to students need to be considered when choosing media and technology:

  • student demographics;
  • access; and
  • differences in how students learn.

Student demographics

One of the fundamental changes resulting from mass higher education is that university and college teachers must now teach an increasingly diverse range of students. This increasing diversity of students presents major challenges for post-secondary teachers. It requires that courses should be developed with a wide variety of approaches and ways to learn if all students in the course are to be taught well.

In particular, it is important to be clear about the needs of the target group. First and second year students straight from high school are likely to require more support and help studying at a university or college level. They are likely to be less independent as learners, and therefore it may be dangerous to expect them to be able to study entirely through the use of technology. However, technology may be useful as a support for classroom teaching, especially if it provides an alternative approach to learning from the face-to-face teaching, and is gradually introduced, to prepare them for more independent study later in a program.

On the other hand, for students who have already been through higher education as a campus student, but are now in the workforce, a program delivered entirely by technology at a distance is likely to be attractive. Such students will have already developed successful study skills, will have their own community and family life, and will welcome the flexibility of studying this way.

Third and fourth year undergraduate students may appreciate a mix of classroom-based and online study or even one or two fully online courses, especially if some of their face-to-face classes are closed to further enrolments, or if students are working part-time to help cover some of the costs of being at college.

Lastly, within any single class or group of learners, there will be a wide range of differences in prior knowledge, language skills, and preferred study styles. The intelligent use of media and technology can help accommodate these differences. This will be discussed further below (Section 9.2.3).

Access

Of all the criteria in determining choice of technology, this is perhaps the most discriminating. No matter how powerful in educational terms a particular medium or technology may be, if students cannot access it in a convenient and affordable manner they cannot learn from it. Thus you may believe that video streaming is the best way to get your great lectures to students off campus, but if they do not have Internet access at home, or if it takes four hours to download, then forget it. (This is a particular weakness in the argument for using xMOOCs in developing countries. Even if potential learners have Internet or mobile phone access, which 5 billion still don’t, it often costs a day’s wages to download a single YouTube video – see Marron, Missen and Greenberg, 2014).

If you are intending to use computers, tablets or mobile phones for students, then you need answers to a number of questions.

  • What is your or your department’s policy with regard to students’ access to a computer, tablets or mobile phones?
  • Can they use any device or is there a limited list of devices that the institution will support?
  • Is the medium or software you are using compatible with all makes of mobile phones?
  • Is the network adequate to support any extra students your class might add?
  • Who else in the institution needs to know that you are requiring students to use particular devices?

If students are expected to provide their own devices (which increasingly makes sense),

  • what kind of device do they need: one at home with Internet access or a portable that they can bring on to campus – or one that can be used both at home and on campus?
  • What kind of applications will they need to run on their device(s) for study purposes?
  • Will they be able to use the same device(s) across all courses, or will they need different software/apps and devices for different courses?
  • What software skills will students need?
  • Will they need to know how to use a particular software before taking a course, or will they be taught this during the course?

Students (as well as the instructor) need to know the answers to these questions before they enrol in a course or program. In order to answer these questions, you and your department must know what students will use their devices for. There is no point in requiring students to go to the expense of purchasing a laptop computer if the work they are required to do on it is optional or trivial. This means some advance planning on your part.

  • What are the educational advantages that you see in student use of a particular device?
  • What will students need to do on the device in your course?
  • Is it really essential for them to use a device in these ways, or could they easily manage without the device?
  • What technology skills will they need, and will most students have these skills?
  • If students do not have the skills, would it still be worth their learning them, and will there be time set aside in the course for them to learn these skills?

It will really help if your institution has good policies in place for student technology access (see Section 9.7 below). If the institution doesn’t have clear policies or infrastructure for supporting the technologies you want to use, then your job is going to be a lot harder.

The answer to the question of access and the choice of technology will also depend somewhat on the mandate of the institution and your personal educational goals. For instance, highly selective universities can require students to use particular devices, and can help the relatively few students who have financial difficulties in purchasing and using specified devices. If though the mandate of the institution is to reach learners denied access to conventional institutions, equity groups, the unemployed, the working poor, or workers needing up-grading or more advanced education and training, then it becomes critical to find out what technology they have access to or are willing to use.

For instance, the McGill University Health Centre in Montreal conducted a study on how best to improve the communication of health information and education for ‘hard to reach’ patients. These were defined as patients or clients with low levels of literacy, those who face language and cultural barriers, and those who have difficulties processing information because of physical or cognitive disabilities. The study found that most of these patients do not, and do not want to, use computers, even though many Canadian hospitals and health care centers are increasingly relying on computer-mediated information systems for patients (Centre for Literacy, 2001). If an institution’s policy is open access to anyone who wants to take its courses, the availability of equipment already in the home (usually purchased for entertainment purposes) becomes of paramount importance.

If students do not already have personal access to specific technologies, alternatives are to provide the necessary equipment on campus, or through access at local community centres or the workplace. However, the use of local centres may limit another important factor with regard to access, and that is flexibility. If students have to travel to a local centre, or if the centre is open only at certain times, then this will reduce flexibility and increase the barriers to learning. Also, costs can escalate rapidly if the institution has to provide hardware and software for students.

Another important factor to consider is access for student with disabilities. This may mean providing textual or audio options for deaf and visually impaired students respectively. Fortunately there are now well established practices and standards under the general heading of Universal Design standards. Universal Design is defined as follows:

Universal Design for Learning, or UDL, refers to the deliberate design of instruction to meet the needs of a diverse mix of learners. Universally designed courses attempt to meet all learners’ needs by incorporating multiple means of imparting information and flexible methods of assessing learning. UDL also includes multiple means of engaging or tapping into learners’ interests. Universally designed courses are not designed with any one particular group of students with a disability in mind, but rather are designed to address the learning needs of a wide-ranging group.

Brokop, F. (2008)

Most institutions with a centre for supporting teaching and learning will be able to provide assistance to faculty to ensure the course meets universal design standards.  A good guide is available here.

Student differences with respect to learning with technologies

It may seem obvious that different students will have different preferences for different kinds of technology or media. The design of teaching would cater for these differences. Thus if students are ‘visual’ learners, they would be provided with diagrams and illustrations. If they are auditory learners, they will prefer lectures and podcasts. It might appear then that identifying dominant learning styles should then provide strong criteria for media and technology selection. However, it is not as simple as that.

McLoughlin (1999), in a thoughtful review of the implications of the research literature on learning styles for the design of instructional material, concluded that instruction could be designed to accommodate differences in both cognitive-perceptual learning styles and Kolb’s (1984) experiential learning cycle. In a study of new intakes conducted over several years at the University of Missouri-Columbia, using the Myers-Briggs inventory, Schroeder (1993) found that new students think concretely, and are uncomfortable with abstract ideas and ambiguity.

However, a major function of a university education is to develop skills of abstract thinking, and to help students deal with complexity and uncertainty. Perry (1984) found that learning in higher education is a developmental process. It is not surprising then that many students enter college or university without such ‘academic’ skills. Indeed, there are major problems in trying to apply learning styles and other methods of classifying learner differences to media and technology selection and use. Laurillard (2001) makes the point that looking at learning styles in the abstract is not helpful. Learning has to be looked at in context. Thinking skills in one subject area do not necessarily transfer well to another subject area. There are ways of thinking that are specific to different subject areas. Thus logical-rational thinkers in science do not necessarily make thoughtful husbands, or good literary critics.

Part of a university education is to understand and possibly challenge predominant modes of thinking in a subject area. While learner-centered teaching is important, students need to understand the inherent logic, standards, and values of a subject area. They also need to be challenged, and encouraged to think outside the box. This may clash with their preferred learning style. Indeed, the research on the effectiveness of matching instructional method to learning styles is at best equivocal. For instance, Dziuban et al. (2000), at the University of Central Florida, applied Long’s reactive behavior analysis of learning styles to students in both face-to-face classes and Web-based online classes. They found that learning style does not appear to be a predictor of who withdraws from online courses, nor were independent learners likely to do better online than other kinds of learners.

The limitations of learning styles as a guide to designing courses does not mean we should ignore student differences, and we should certainly start from where the student is. In particular, at a university level we need strategies to gradually move students from concrete learning based on personal experience to abstract, reflective learning that can then be applied to new contexts and situations. We shall see in Section 9.5 that technology can be particularly helpful for that.

Thus when designing courses, it is important to offer a range of options for student learning within the same course. One way to do this is to make sure that a course is well structured, with relevant ‘core’ information easily available to all students, but also to make sure that there are opportunities for students to seek out new or different content. This content should be available in a variety of media such as text, diagrams, and video, with concrete examples explicitly related to underlying principles. We shall see in Chapter 10 that the increasing availability of open educational resources makes the provision of this ‘richness’ of possible content much more viable.

Similarly, technology enables a range of learner activities to be made available, such as researching readings on the Web, online discussion forums, synchronous presentations, assessment through e-portfolios, and online group work. The range of activities increases the likelihood that a variety of learner preferences are being met, and also encourages learners to involve themselves in activities and approaches to learning where they may initially feel less comfortable. Such approaches to design are more likely to be effective than courses in multiple versions developed to meet different learning styles. In any case developing multiple versions of courses for different styles of learner is likely to be impractical in most cases. So avoid trying to match different media to different learning styles but instead ensure that students have a wide range of media (text, audio, video, computing) within a course or program.

Lastly, one should be careful in the assumptions made about student preferences for learning through digital technologies. On the one hand, technology ‘boosters’ such as Mark Prensky and Don Tapscott argue that today’s ‘digital natives’ are different from previous generations of students. They argue that todays students live within a networked digital universe and therefore expect their learning also to be all digitally networked. It is also true that professors in particular tend to underestimate students’ access to advanced technologies (professors are often late adopters of new technology), so you should always try to find up-to-date information on what devices and technologies students are currently using, if you can.

On the other hand, it is also dangerous to assume that all students are highly ‘digital literate’ and are demanding that new technologies should be used in teaching. Jones and Shao (2011) conducted a thorough review of the literature on ‘digital natives’, with over 200 appropriate references, including surveys of relevant publications from countries in Europe, Asia, North America, Australia and South Africa. They concluded that:

  • students vary widely in their use and knowledge of digital media
  • the gap between students and their teachers in terms of digital literacy is not fixed, nor is the gulf so large that it cannot be bridged
  • there is little evidence that students enter university with demands for new technologies that teachers and universities cannot meet;
  • students will respond positively to changes in teaching and learning strategies that include the use of new technologies that are well conceived, well explained and properly embedded in courses and degree programmes. However there is no evidence of a pent-up demand amongst students for changes in pedagogy or of a demand for greater collaboration;
  • the development of university infrastructure, technology policies and teaching objectives should be choices about the kinds of provision that the university wishes to make and not a response to general statements about what a new generation of students are demanding;
  • the evidence indicates that young students do not form a generational cohort and they do not express consistent or generationally organised demands.

Graduating students that have been interviewed about learning technologies at the University of British Columbia made it clear that they will be happy to use technology for learning so long as it contributes to their success (in the words of one student, ‘if it will get me better grades’) but the students also made it clear that it was the instructor’s responsibility to decide what technology was best for their studies.

It is also important to pay attention to what Jones and Shao are not saying. They are not saying that social media, personal learning environments, or collaborative learning are inappropriate, nor that the needs of students and the workforce are unchanging or unimportant, but the use of these tools or approaches should be driven by a holistic look at the needs of all students, the needs of the subject area, and the learning goals relevant to a digital age, and not by an erroneous view of what a particular generation of students are demanding.

In summary, one great advantage of the intelligent application of technology to teaching is that it provides opportunities for students to learn in a variety of ways, thus adapting the teaching more easily to student differences. Thus, the first step in media selection is to know your students, their similarities and differences, what technologies they already have access to, and what digital skills they already possess or lack that may be relevant for your courses. This is likely to require the use of a wide range of media within the teaching.

References

Brokop, F. (2008) Accessibility to E-Learning for Persons With Disabilities: Strategies, Guidelines, and Standards Edmonton AB: NorQuest College/eCampus Alberta

Centre for Literacy of Québec (2001) Needs assessment of the health education and information needs of hard-to-reach patients Montréal: Centre for Literacy of Québec

Dziuban, C. et al. (2000) Reactive behavior patterns go online  The Journal of Staff, Program and Organizational Development, Vol. 17, No.3

Jones, C. and Shao, B. (2011) The Net Generation and Digital Natives: Implications for Higher Education Milton Keynes: Open University/Higher Education Academy

Kolb. D. (1984) Experiential Learning: Experience as the source of learning and development Englewood Cliffs NJ: Prentice Hall

Laurillard, D. (2001) Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies New York/London: Routledge

Marron, D. Missen, C. and Greenberg, J. (2014) “Lo-Fi to Hi-Fi”: A New Way of Conceptualizing Metadata in Underserved Areas with the eGranary Digital Library Austin TX: International Conference on Dublin Core and Metadata Applications

McCoughlin, C. (1999) The implictions of the research literature on learning styles for the design of instructional material Australian Journal of Educational Technology, Vol. 15, No. 3

Perry, W. (1970) Forms of intellectual development and ethical development in the college years: a scheme New York: Holt, Rinehart and Winston

Prensky, M. (2001) ‘Digital natives, Digital Immigrants’ On the Horizon Vol. 9, No. 5

Schroeder, C. (1993) New students – new learning styles, Change, Sept.-Oct

Feedback

As always, feedback will be much appreciated. In particular:

  1. It seems obvious that students should be the first consideration in any educational decision. However, apart from student access to technology, student differences do not seem to me to be a very strong determinant of media choice, because there is so much variability in their needs. Do you agree?
  2. Linked to this, where do you stand on learning styles and media selection? You see I have been cautious about this and have fallen back on a general statement of ensuring a wide mix of media within a course. What are your views on this?
  3. One of the great benefits of the Internet is that it enables/includes nearly all media (text, audio, video, computing) – so do we really need a decision model? If we do, why?
  4. Any other comments, suggestions about appropriate graphics or video to illustrate this section, or examples of how you make decisions about choice of media, will be welcomed.

Next

Ease of use and costs as criteria.

EDEN research papers on learner characteristics, course design and faculty development in online learning

Listen with webReader
Some of the participants at the EDEN Research workshop, 2014

Some of the participants at the EDEN Research workshop, 2014

EDEN has now published my review of some of the research papers submitted to the EDEN research workshop in Oxford a couple of weeks ago. All the full papers for the workshop can be accessed here.

Main lessons I culled from these papers:

Learner characteristics

  • open and distance learners/online learners are much more heterogeneous than on-campus students: social background, institutional differences, prior education/learning experiences, all influence their readiness for online learning
  • as a result, ODL students need much more personalization or individualization of their learning: one size does not fit all
  • special attention needs to be paid to ‘at risk’ students very early in their studies: intense personal/tutor support is critical for such students.

It can be seen that such findings are important not only for the design of for-credit programs but also for MOOCs.

Course design

There were surprisingly few papers directly on this topic (although papers on other topics such as assessment and quality are also relevant of course).

The main lessons for me from this research on course design were:

  • technology offers opportunity for radically new course designs and new approaches to student learning,
  • such new designs need to be driven and informed by sound pedagogical theory/principles and prior research.

Faculty development

Main lessons:

  • we should be working to use technology to decrease faculty workload, not to increase it, as at present
  • this will probably require team teaching, with different skills within the team (subject expert, learner support staff, course designer/pedagogue, technology specialist); it is unrealistic to expect faculty to be expert in all these areas
  • to individualize learning, increased use of adaptive technology and the creation and support of personal learning environments will be necessary to help faculty manage the workload.

Next

Two more reports are expected shortly, covering OERs/MOOCs, quality and assessment, research methods and overall conclusions.

Key characteristics of learners in a digital age and their influence on the design of teaching and learning

Listen with webReader

cultural diversity 2

In my previous post, I outlined some key components of learning environments, which will form part of Chapter 5 of my open textbook, ‘Teaching in a Digital Age.’ Here is one model of a learning environment that I provided in my previous post.

Figure 5.1 A learning environment from the perspective of an instructor

Figure 5.1 A learning environment from the perspective of an instructor

Learner characteristics

Here I want to discuss one key component of a learning environment, learner characteristics, and in particular focus on the characteristics of learners that are particularly relevant for designing teaching and learning in a digital age.

Probably nothing more reflects changes to teaching in a digital age than the change in learner characteristics.

Learner characteristics 2

Increased diversity

I noted in Chapter 1 (Section 1.4) that in developed countries such as Canada, public ‘post-secondary institutions are expected to represent the same kind of socio-economic and cultural diversity as in society at large, rather than being institutions reserved for an elite minority.’ In an age where economic development is tightly associated with higher levels of education, the goal now is to bring as many students as possible to the standards required, rather than focus on just the needs of the most able students. This means finding ways of helping a very wide range of students with very different levels of ability and/or prior knowledge to succeed. One size clearly does not fit all today. Dealing with an increasingly diverse student population is perhaps the greatest of all challenges then that teachers and instructors face in a digital age, particularly but not exclusively at a post-secondary level.  This is not something for which instructors primarily qualified in subject matter expertise are well prepared. 

Later in the book I will demonstrate that a combination of good design and an appropriate use of technology will greatly facilitate the personalization of learning, allowing for instance for different students to work at different speeds, and to focus learning on students’ specific interests and needs, thus ensuring engagement and motivation for a diverse range of students. However, the first and perhaps most important step is for instructors to know their students, and in particular, to identify from the vast range of information regarding students and their differences, which are the most important for the design of teaching and learning in a digital age.

The work and home context

Two factors make the work and home context an important consideration in the design of teaching and learning: students are increasingly working while studying (about half of all Canadian post-secondary students also work, and those that do work average 16 hours a week – Marshall, 2011); and the age range of students continues to spread, with the average age of students slowly increasing (at the University of British Columbia, the average age of undergraduates is 20, but more than one third of all their students are over 24 years old. The mean age for graduate students in 2014 was 31 – UBC Vancouver Fact Sheet, 2014.)

There are several reasons for the average age of students increasing, at least in North America:

  • students are taking longer to graduate (partly because they tend to take a smaller study load when working)
  • increasing numbers of students are going on to grad school
  • more students are coming back for additional courses and programs after graduating (lifelong learners), mainly for economic reasons.

What partly or fully employed students, or students with families, are increasingly requiring is more flexibility in their studying, and especially avoiding long commutes between home, work and college. Thus this type of student is looking increasingly to hybrid or fully online courses, and for smaller modules, certificates or programs that they can fit around their work and family life.

Learners’ goals

Understanding the motivation of students and what they expect to get out of a course or program should also influence the design of a course or program. For academic learning, it is often necessary to find ways to move students whose approach to learning is initially driven by extrinsic rewards such as grades or qualifications to an approach that engages and motivates students in the subject matter itself.

Potential students already with a post-secondary qualification and a good job may not want to work through a pre-determined set of courses but may want just specific areas of content from existing courses, tailored to meet their needs (for instance, on demand and delivered online).

Thus it is important to have some kind of knowledge or understanding of why learners are likely to take your course or program, and what they are hoping to get out of it.

Prior knowledge or skills

Future learning often depends on students having prior knowledge or an ability to do things at a certain level. Teachers aim to bridge the difference between what a learner can do without help and what he or she can do with help, what Vygotsky (1978) termed the zone of proximal development. If the difficulty level of the teaching is aimed too far beyond the capability or prior knowledge and skills of a learner, then learning fails to occur.

However, the more diverse the students in a program, the more diverse the knowledge and skill levels they are likely to bring with them. Indeed, lifelong learners, or new immigrants repeating a subject because their foreign qualifications are not recognised, may bring specialist or advanced knowledge that can be drawn on to enrich the learning experience for everyone. Other students may not have the same basic knowledge as others in a course and will need more help. In such a context it is important to design the learning experience so that it is flexible enough to accommodate students with a wide range of prior knowledge and skills.

Digital natives

Most students now have grown up with digital technologies such as mobile phones, tablets and social media, including Facebook, Twitter, blogs and wikis.  Prensky (2010) and others (e.g. Tapscott, 2008) argue that not only are such students more proficient in using such technologies than those who had to learn how to use such technologies as adults (termed ‘digital immigrants’ by Prensky), but that they also think differently (Tapscott, 2008).

Jones and Shao (2011) have made a thorough review of the literature on this topic, and found the following:

  • the terms Net Generation and Digital Native do not capture the processes of change that are taking place [which are more complex]; the evidence indicates that young students do not form a generational cohort and they do not express consistent or generationally organised demands..
  • students do not naturally make extensive use [for study purposesof many of the most discussed new technologies such as Blogs, Wikis and 3D Virtual Worlds ….
  • the gap between students and their teachers is not fixed, nor is the gulf so large that it cannot be bridged.
  • students who are required to use these technologies in their courses are unlikely to reject them and low use does not imply that they are inappropriate for educational use. 
  • the development of university infrastructures, such as new kinds of learning environments ….should be choices about the kinds of provision that the university wishes to make and not a response to general statements about what a new generation of students are demanding

It is particularly important to understand that students themselves vary a great deal in their use of social media and new technologies, that their use is largely driven by social and personal demands, and their use of digital technologies does not naturally flow across into educational use. They will use new technologies and social media for learning though where instructors make a good case for it and when students can see that the use of digital media will directly help them in their studies. For this to happen though deliberate design choices are required on the part of the instructor.

In conclusion

With an increasingly diverse student population, one size will not fit all. We need to develop flexible approaches to teaching and learning that can accommodate and support this diversity. The aim is to enable as many students as possible to succeed, not just to identify the best and brightest for grad school. At the same time, the student demographic in most countries is rapidly changing. The more we understand our students – who they are, what they want, how they live – the better placed we are to design a learning environment that fits their needs.

The work and home context, learners’ goals, and students’ prior knowledge and skills (including their competence with digital media) are some of the critical factors that should influence the design of teaching. For some instructors, other characteristics of learners, such as learning styles, gender differences or cultural background, may be more important, depending on the context. Whatever the context, good design in teaching requires good information about the learners we are going to teach, and in particular good design needs to address the increasing diversity of our students.

Over to you

As always, your comments and feedback on this are critical. In particular:

  1. Are these the main characteristics of learners that you would consider important to identify when designing teaching for a digital age? What would you have added?
  2. What do you see as the main implications for the design of teaching and learning of these changing student characteristics?
  3. How feasible is it to get this information? How would or do you go about it?

Next up

I will be discussing how we need to look differently in a digital age at teaching content and skills.

WCET’s analysis of U.S. statistics on distance education

Listen with webReader

IPEDS 2

U.S.Department of Education (2014) Web Tables: Enrollment in Distance Education Courses, by State: Fall 2012 Washington DC: U.S.Department of Education National Center for Education Statistics

Hill, P. and Poulin, R. (2014) A response to new NCES report on distance education e-Literate, June 11

The U.S. Department of Education’s Institute of Education Sciences operates a National Center for Education Statistics which in turn runs the Integrated Postsecondary Education Data System (IPEDS). IPEDS is:

a system of interrelated surveys conducted annually by the U.S. Department’s National Center for Education Statistics (NCES). IPEDS gathers information from every college, university, and technical and vocational institution that participates in the federal student financial aid programs. The Higher Education Act of 1965, as amended, requires that institutions that participate in federal student aid programs report data on enrollments, program completions, graduation rates, faculty and staff, finances, institutional prices, and student financial aid. These data are made available to students and parents through the College Navigator college search Web site and to researchers and others through the IPEDS Data Center

Recently IPEDS released “Web Tables” containing results from their Fall Enrollment 2012 survey. This was the first survey in over a decade to include institutional enrollment counts for distance education students. In the article above, Phil Hill of e-Literate and Russell Poulin of WCET have co-written a short analysis of the Web Tables released by IPEDS.

The Hill and Poulin analysis

The main points they make are as follows:

  • overall the publication of the web tables in the form of a pdf is most welcome, in particular by providing a breakdown of IPEDS data by different variables such as state jurisdiction, control of institution, sector and student level
  • according to the IPEDS report there were just over 5.4 million students enrolled in distance education courses in the fall semester 2012 (NOTE: this number refers to students, NOT course enrollments).
  • roughly a quarter of all post-secondary students in the USA are enrolled in a distance education course.
  • the bulk of students in the USA taking distance education courses are in publicly funded institutions (85% of those taking at least some DE courses), although about one third of those taking all their classes at a distance are in private, for-profit institutions (e.g. University of Phoenix)
  • these figures do NOT include MOOC enrollments
  • as previously identified by Phil Hill in e-Literate, there is major discrepancy in the number of students taking at least one online course between the IPEDS study and the regular annual surveys conducted by Allen and Seaman at Babson College – 7.1 million for Babson and 5.5 million for IPEDS. Jeff Seaman, one of the two Babson authors, is also quoted in e-Literate on his interpretation of the differences. Hill and Poulin comment that the NCES report would have done well to at least refer to the significant differences.
  • Hill and Poulin claim that there has been confusion over which students get counted in IPEDS reporting and which do not. They suspect that there is undercounting in the hundreds of thousands, independent of distance education status.

Comment

There are lies, damned lies and statistics. Nevertheless, although the IPEDS data may not be perfect, it does a pretty good job of collecting data on distance education students across the whole of the USA. However, it does not distinguish between mode of delivery of distance education (are there still mainly print-based courses around)?

So we now have two totally independent analyses of distance education students in the USA, with a minimum number of 5.5 million and a maximum number of 7.1 million, i.e. between roughly a quarter and a third of all post-secondary students. From the Allen and Seaman longitudinal studies, we can also reasonably safely assume that online enrollments have been increasing between 10-20% per annum over the last 10 years, compared with overall enrollments of 2-5% per annum.

By contrast, in Canada we have no national data on either online or distance education students. It’s hard to see how Canadian governments or institutions can take evidence-based policy decisions about online or distance education without such basic information.

Lastly, thank you, Phil and Russ, for a very helpful analysis of the IPEDs report.

Update

For a more detailed analysis, see also:

Haynie, D. (2014) New Government Data Sheds Light on Online Learners US News, June 13