January 25, 2015

A new way to look at the costs of digital media in education

Listen with webReader
Image: © Ehrenberg, D., AlleyWatch.com, 2013

Image: © Ehrenberg, D., AlleyWatch.com, 2013

I said it was going to be fun looking at the costs of digital media in education, but it wasn’t. When I came to write this section, I thought it would be a breeze. I wrote about this topic as recently as 2005. All I needed to do is tweak it a little to bring it up to date, I thought.

However, there has truly been a revolution in the media available for teaching and learning in the last ten years, and this revolution has completely up-ended many of the assumptions about costs previously made in this field. Most of the research on costs of educational media had been done by people (like myself) working mainly in distance education, because that was where technology was being mainly used for teaching. That has all changed now: media have gone mainstream.

What is really interesting though is how little research there has been done on the costs of new digital media in education (MOOCs are a slight exception). Nevertheless, when I dug into the topic, I came to what struck me at first as an astonishing conclusion: the costs of media don’t matter any more in media selection. Use what suits best your educational purpose, because it’s all low cost now.

Of course, that is a gross over-simplification. Like many other topics in this area, straight comparisons between different media don’t work. What you have to look at are the conditions or factors that influence costs, across all media. That’s what I’ve tried to explore in this section. Remember I’m targeting teachers and instructors, not economists or instructional designers. So here goes, and please, let me have feedback on this (see the end of this rather long post):

9.4.1 A revolution in media

Until as recently as ten years ago, cost was a major discriminator affecting the choice of technology (Hülsmann, 2000, 2003; Rumble, 2001; Bates, 2005). For instance, for educational purposes, audio (lectures, radio, audio-cassettes) was far cheaper than print, which in turn was far cheaper than most forms of computer-based learning, which in turn was far cheaper than video (television, cassettes or video-conferencing). All these media were usually seen as either added costs to regular teaching, or too expensive to use to replace face-to-face teaching, except for purely distance education on a fairly large scale.

However, there have been dramatic reductions in the cost of developing and distributing all kinds of media (except face-to-face teaching) in the last ten years, due to several factors:

  • rapid developments in consumer technologies such as smart phones that enable text, audio and video to be both created and transmitted by end users at low cost
  • compression of digital media, enabling even high bandwidth video or television to be carried over wireless, landlines and the Internet at an economic cost (at least in economically advanced countries)
  • improvements in media software, making it relatively easy for non-professional users to create and distribute all kinds of media
  • increasing amounts of media-based open educational resources, which are already developed learning materials that are free for teachers and students alike to use.

The good news then is that in general, and in principle, cost should no longer be an automatic discriminator in the choice of media. If you are happy to accept this statement at face value, than you can skip the rest of this chapter. Choose the mix of media that best meets your teaching needs, and don’t worry about which medium is likely to cost more. Indeed, a good case could be made that it would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration.

In practice however costs can vary enormously both between and within media, depending once again on context and design. Since the main cost from a teacher’s perspective is their time, it is important to know what are the ‘drivers’ of cost, that is, what factors are associated with increased costs, depending on the context and the medium being used. These factors are less influenced by new technological developments, and can therefore be seen as ‘foundational’ principles when considering the costs of educational media.

Unfortunately there are many different factors that can influence the actual cost of using media in education, which makes a detailed discussion of costs very complex. As a result, I will try to identify the main cost drivers, then provide a table that provides a simplified guide to how these factors influence the costs of different media, including face-to-face teaching. This guide again should be considered as a heuristic device. So see this chapter as Media Costs 101.

9.4.1 Cost categories

The main cost categories to be considered in using educational media and technologies, and especially blended or online learning, are as follows:

9.4.1.2 Development

These are the costs needed to pull together or create learning materials using particular media or technologies. There are several sub-categories of development costs:

  • production costs: making a video or building a course section in a learning management system. Included in these costs will be the time of specialist staff, such as web designers or audio-visual specialists, as well as any costs in web design or video production
  • your time as an instructor: the work you have to do as part of developing or producing materials.  This will include planning/course design as well as development. Your time is money, and probably the largest single cost in using educational technologies, but more importantly, if you are developing learning materials you are not doing other things, such as research or interacting with students, so there is a real cost, even if it is not expressed in dollar terms.
  • copyright clearance if you are using third party materials such as photos or video clips. Again, this is more likely to be thought of as time rather than money
  • probably the cost of an instructional designer in terms of their time

Development costs are usually fixed or ‘once only’ and are independent of the number of students. Once media are developed, they are usually scalable, in that once produced, they can be used by any number of learners without increased development costs. Using open educational resources can help reduce greatly media development costs.

9.4.1.3 Delivery

This includes the cost of the educational activities needed during offering the course and would include instructional time spent interacting with students, instructional time spent on marking assignments, and would include the time of other staff supporting delivery, such as teaching assistants, adjuncts for additional sections and instructional designers and technical support staff.

Because of the cost of human factors such as instructional time and technical support needed in media-based teaching, delivery costs tend to increase as student numbers increase, and also have to be repeated each time the course is on offer, i.e. they are recurrent. However, increasingly with Internet-based delivery, there is usually a zero direct technology cost in delivery.

9.4.1.4 Maintenance costs

Once materials for a course are created, they need to be maintained. Urls go dead, set readings may go out of print or expire, and more importantly new developments in the subject area may need to be accommodated. Thus once a course is offered, there are ongoing maintenance costs.

Instructional designers and/or media professionals can manage some of the maintenance, but nevertheless teachers or instructors will need to be involved with decisions about content replacement or updating. Maintenance is not usually a major time consumer for a single course, but if an instructor is involved in the design and production of several online courses, maintenance time can build to a significant amount.

Maintenance costs are usually independent of the number of students, but are dependent on the number of courses an instructor is responsible for, and are recurrent each year.

9.4.1.5 Overheads

These include infrastructure or overhead costs, such as the cost of licensing a learning management system, lecture capture technology and servers for video steaming. These are real costs but not ones that can be allocated to a single course but will be shared across a number of courses. Overheads are usually considered to be institutional costs and, although important, probably will not influence a teacher’s decision about which media to use, provided these services are already in place and the institution does not directly charge for such services.

9.4.2 Cost drivers

The primary factors that drive cost are

  • the development/production of materials,
  • the delivery of materials,
  • number of students/scalability
  • the experience of an instructor working with the medium
  • whether the instructor develops materials alone (self-development) or works with professionals

Production of technology-based materials such as a video program, or a Web site, is a fixed cost, in that it is not influenced by how many students take the course. However, production costs can vary depending on the design of the course. Engle (2014) showed that depending on the method of video production, the development costs for a MOOC could vary by a factor of six (the most expensive production method – full studio production – being six times that of an instructor self-recording on a laptop).

Nevertheless, once produced, the cost is independent of the number of students. Thus the more expensive the course to develop, the greater the need to increase student numbers to reduce the average cost per student. (Or put another way, the greater the number of students, the more reason to ensure that high quality production is used, whatever the medium). In the case of MOOCs (which tend to be almost twice as expensive to develop as an online course for credit using a learning management system – University of Ottawa, 2013) the number of learners is so great that the average cost per student is very small. Thus there are opportunities for economies of scale from the development of digital material, provided that student course enrolments can be increased (which may not always be the case). This can be described as the potential for the scalability of a medium.

Similarly, there are costs in teaching the course once the course is developed. These tend to be variable costs, in that they increase as class size increases. If student-teacher interaction, through online discussion forums and assignment marking, is to be kept to a manageable level, then the teacher-student ratio needs to be kept relatively low (for instance, between 1:25 to 1:40, depending on the subject area and the level of the course). The more students, the more time a teacher will need to spend on delivery, or additional contract instructors will need to be hired. Either way, increased student numbers generally will lead to increased costs. xMOOCs are an exception. Their main value proposition is that they do not provide direct learner support, so have zero delivery costs. However, this is probably the reason why such a small proportion of participants successfully complete MOOCs.

There may be benefits then for a teacher or for an institution in spending more money up front for interactive learning materials if this leads to less demand for teacher-student interaction. For instance, a mathematics course might be able to use automated testing and feedback and simulations and diagrams, and pre-designed answers to frequently asked questions, with less or even no time spent on individual assignment marking or communication with the teacher. In this case it may be possible to manage teacher-student ratios as high as 1:200 or more, without significant loss of quality.

Also, experience in using or working with a particular medium or delivery method is important. The first time an instructor uses a particular medium such as podcasting, it takes much longer than subsequent productions or offerings. Some media or technologies though need much more effort to learn to use than others. Thus a related cost driver is whether the instructor works alone (self-development) or works with media professionals. Self-developing materials will usually take longer for an instructor than working with professionals.

There are advantages in teachers and instructors working with media professionals when developing digital media. Media professionals will ensure the development of a quality product, and above all can save teachers or instructors considerable time, for instance through the choice of appropriate software, editing, and storage and streaming of digital materials. Instructional designers can help in suggesting appropriate applications of different media for different learning outcomes. Thus as with all educational design, a team approach is likely to be more effective, and working with other professionals will help control the time teachers and instructors spend on media development.

Lastly, design decisions are critical. Costs are driven by design decisions within a medium. For instance cost drivers are different between lectures and seminars (or lab classes) in face-to-face teaching. Similarly, video can be used just to record talking heads, as in lecture capture, or can be used to exploit the affordances of the medium (see Section 9. 5), such as demonstrating processes or location shooting. Computing has a wide and increasing range of possible designs, including online collaborative learning (OCL), computer-based learning, animations, simulations or virtual worlds. Social media are another group of media that also need to be considered.

Figure 9.4 attempts to capture the complexity of cost factors, focusing mainly on the perspective of a teacher or instructor making decisions. Again, this should be seen as a heuristic device, a way of thinking about the issue. Other factors could be added (such as social media, or maintenance of materials). I have given my own personal ratings for each cell, based on my experience. I have taken conventional teaching as a medium or ‘average’ cost, then ranked cells as to whether there is a higher or lower cost factor for the particular medium. Other readers may well rate the cells differently.

Figure 9. Drivers of cost for educational media

Figure 9.4 Drivers of cost for educational media

Thus although in particular the time it takes to develop and deliver learning using different technologies is likely to influence an instructor’s decision about what technology to use, it is not a simple equation. For instance, developing a good quality online course using a mix of video and text materials may take much more of the instructor’s time to prepare than if the course was offered through classroom teaching. However, the online course may take less time in delivery over several years, because students may be spending more time on task online, and less time in direct interaction with the instructor. Once again, we see that design is a critical factor in how costs are assessed.

In short, from an instructor perspective, time is the critical cost factor. Technologies that take a lot of time to use are less likely to be used than those that are easy to use and thus save time. But once again design decisions can greatly affect how much time teachers or instructors need to spend on any medium, and the ability of teachers and students to create their own educational media is becoming an increasingly important factor.

9.4.3 Issues for consideration

In recent years, university faculty have generally gravitated more to lecture capture for online course delivery, particularly in institutions where online or distance learning is relatively new, because it is ‘simpler’ to do than redesign and create mainly text based materials in learning management systems. Lecture capture also more closely resembles the traditional classroom method. Pedagogically though (depending on the subject area) it may be less effective than an online course using collaborative learning and online discussion forums, as we shall see in Section 9.5. Also, from an institutional perspective lecture capture has a much higher technology cost than a learning management system.

Also, students themselves can now use their own devices to create multimedia materials for project work or for assessment purposes in the form of e-portfolios. Media allow instructors, if they wish, to move a lot of the hard work in teaching and learning from themselves to the students. Media allow students to spend more time on task, and low cost, consumer media such as mobile phones or tablets enable students themselves to create media artefacts, enabling them to demonstrate their learning in concrete ways. This does not mean that instructor ‘presence’ is no longer needed when students are studying online, but it does enable a shift in where and how a teacher or instructor can spend their time in supporting learning.

9.4.4 Questions for consideration

You may be better answering these questions when you have read Section 9.5 on the affordances of media. However, I think you will find it interesting to answer these questions before reading Section 9.5, then compare your answers after you have read Section 9.5

  1. Are concerns about the possible cost/demands on your time influencing your decisions on what media to use? If so in what ways? Has this section on costs changed your mind?
  2. How much time do you spend preparing lectures? Could that time be better spent preparing learning materials, then using the time saved from delivering lectures on interaction with students (online and/or face-to-face)?
  3. What kind of help can you get in your institution from instructional designers and media professionals for media design and development? What media decisions will the answer to this question suggest to you? For instance, if you are in a k-12 school with little or no chance for professional support, what kind of media and design decisions are you likely to make?
  4. To what extent have you explored open educational resources in your subject area? Type in the name of your course or topic + OER into Google  and see what comes up. How would the availability of such free media influence the design of your teaching?
  5. If you were filling in the cells for Figure 9.4, what differences would there be with my entries? Why?
  6. In Figure 9.4, add the following media: e-portfolios (in computing) and add another section under computing: social media. Add blogs, wikis and cMOOCs. How would you fill in the cells for each of these for development, delivery, etc.? Are there other media you would also add?
  7. Do you agree with the statement: It would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration? What are the implications for your teaching if this is really true? What considerations would still justify face-to-face teaching?

Feedback

Please! In particular:

  1. Are there more recent publications on the costs of different media (as distinct from online or blended learning in general) that I have missed and should include?
  2. How do you react to Figure 9.4? Is it a helpful way to think of the different conditions or factors that influence costs? If not, what approach would you take to this topic?
  3. How useful are the questions for consideration above (9.4.4) from an instructor’s perspective? Can you suggest better ones?
  4. Do you agree with the following statements:
    1. cost should no longer be an automatic discriminator in the choice of mediaChoose the mix of media that best meets your teaching needs, and don’t worry about which medium is likely to cost more.
    2. It would now be cheaper to replace face-to-face teaching with purely online learning, if cost was the only consideration. 
    3. university faculty have generally gravitated more to lecture capture for online course delivery, particularly in institutions where online or distance learning is relatively new, because it is ‘simpler’ to do than redesign and create mainly text based materials in learning management systems.
    4. Media allow students to spend more time on task, and low cost, consumer media such as mobile phones or tablets enable students themselves to create media artefacts, enabling them to demonstrate their learning in concrete ways. This does not mean that instructor ‘presence’ is no longer needed when students are studying online, but it does enable a shift in where and how a teacher or instructor can spend their time in supporting learning.
  5. Does this approach to the costs of digital media work for you? If not, what would you suggest?

Up next

The pedagogical affordances of different media:

  • text
  • audio
  • video
  • computing
  • social media
  • face-to-face teaching

References

Bates, A. (2005) Technology, e-Learning and Distance Education London/New York: Routledge

Engle, W. (2104)UBC MOOC Pilot: Design and Delivery Vancouver BC: University of British Columbia

Hülsmann, T. (2000) The Costs of Open Learning: A Handbook Oldenburg: Bibliotheks- und Informationssytem der Universität Oldenburg

Hülsmann, T. (2003) Costs without camouflage: a cost analysis of Oldenburg University’s  two graduate certificate programs offered  as part of the online Master of Distance Education (MDE): a case study, in Bernath, U. and Rubin, E., (eds.) Reflections on Teaching in an Online Program: A Case Study Oldenburg, Germany: Bibliothecks-und Informationssystem der Carl von Ossietsky Universität Oldenburg

Rumble, G. (2001) The Cost and Costing of Networked Learning Journal of Asynchronous Learning Networks, Volume 5, Issue 2

University of Ottawa (2013)Report of the e-Learning Working Group Ottawa ON: The University of Ottawa

Ease of use as a criterion for technology selection in online learning

Listen with webReader
Image: © Daily Express, 2012

Reliability is important! Image: © Daily Express, 2012

I felt myself cringing as I wrote this section for my book on ‘Teaching in a Digital Age’. Talk about do what I say and not what I do, especially the part about spending a small amount of time in properly learning about a technology before using it. I was almost half way through writing this book, before I worked out that ‘Parts’ were in fact introductions to ‘Chapters’ and ‘Chapters’ really were sections of chapters, in Pressbook terminology. I also didn’t work out until this week how to actually publish it once it was available in html format.  Oh, that’s what this button is for!

However, ease of use is a critical criterion for media selection. Who wants to spend hours fiddling with the technology when teaching or learning, unless you’re a geek or a computer scientist? ‘Transparency’ is the key word. So here’s my contribution, under the letter ‘E’ in the SECTIONS model.

9.3 The SECTIONS Model: Ease of Use

In most cases, the use of technology in teaching is a means, not an end. Therefore it is important that students and teachers do not have to spend a great deal of time on learning how to use educational technologies, or on making the technologies work. The exceptions of course are where technology is the area of study, such as computer science or engineering, or where learning the use of software tools is critical for some aspects of the curriculum, for instance computer-aided design in architecture, spreadsheets in business studies, and geographical information systems in geology. In most cases, though, the aim of the study is not to learn how to use a particular piece of educational technology, but the study of history, mathematics, or biology.

Computer and information literacy

If a great deal of time has to be spent by the students and teachers in learning how to use for instance software for the development or delivery of course material, this distracts from the learning and teaching. Of course, there is a basic set of literacy skills that will be required, such as the ability to read and write, to use a keyboard, to use word processing software, to navigate the Internet and use Internet software, and increasingly to use mobile devices. These generic skills though could be considered pre-requisites. If students have not adequately developed these skills in school, then an institution might provide preparatory courses for students on these topics.

It will make life a lot easier for both teachers and students if an institution has strategies for supporting students’ use of digital media. For instance, at the University of British Columbia, the Digital Tattoo project prepares students for learning online in a number of ways:

  • introducing students to a range of technologies that could be used for their learning, such as learning management systems, open educational resources, MOOCs and e-portfolios
  • explaining what’s involved in studying online or at a distance
  • setting out the opportunities and risks of social media
  • advice on how to protect their privacy
  • advice on how to make the most of connecting, networking and online searching
  • how to prevent cyberbullying
  • maintaining a professional online presence.

If your institution does not have something similar, then you could direct your students to the Digital Tattoo site, which is fully open and available to anyone to use.

It is not only students though who may need prior preparation. Technology can be too seductive. You can start using it without fully understanding its structure or how it works. Even a short period of training – an hour or less – on how to use common technologies such as a learning management system or lecture capture could save you a lot of time and more importantly, enable you to see the potential value of all features and not just those that you stumble across.

Orientation

A useful standard or criterion for the selection of course media or software is that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on. This 20 minutes may be needed to work out some of the key functions of the software that may be unfamiliar, or to work out how the course Web site is organized and navigated. This is more of an orientation period though than learning new skills of computing.

If we do need to introduce new software that may take a little time to learn, for instance, a synchronous ‘chat’ facility, or video streaming, it should be introduced at the point where it is needed. It is important though to provide time within the course for the students to learn how to do this.

Interface design

The critical factor in making technology transparent is the design of the interface between the user and the machine. Thus an educational program or indeed any Web site should be well structured, intuitive for the user to use, and easy to navigate.

Interface design is a highly skilled profession, and is based on a combination of scientific research into how humans learn, an understanding of how operating software works, and good training in graphic design. This is one reason why it is often wise to use software or tools that have been well established in education, because these have been tested and been found to work well.

The traditional generic interface of computers – a keyboard, mouse, and graphic user interface of windows and pull-down menus and pop-up instructions – is still extremely crude, and not isomorphic with most people’s preferences for processing information. It places very heavy emphasis on literacy skills and a preference for visual learning. This can cause major difficulties for students with certain disabilities, such as dyslexia or poor eyesight. However, in recent years, interfaces have started to become more user friendly, with touch screen and voice activated interfaces.

Nevertheless a great deal of effort often has to go into the adaptation of existing computer or mobile interfaces to make them easy to use in an educational context. The Web is just as much a prisoner of the general computer interface as any other software environment, and the educational potential of any Web site is also restricted by its algorithmic or tree-like structure. For instance, it does not always suit the inherent structure of some subject areas, or the preferred way of learning of some students.

There are several consequences of these interface limitations for teachers in higher education:

  • it is really important to choose teaching software or other technologies that are intuitively easy to use, both by the students in particular, but also for the teacher in creating materials and interacting with students;
  • when creating materials for teaching, the teacher needs to be aware of the issues concerning navigation of the materials and screen lay-out and graphics. While it is possible to add stimulating features such as audio and animated graphics, this comes at the cost of bandwidth. Such features should be added only where they serve a useful educational function, as slow delivery of materials is extremely frustrating for learners, who will normally have slower Internet access that the teacher creating the materials. Furthermore, web-based layout on desktop or laptop computers does not automatically transfer to the same dimensions or configurations on mobile devices, and mobile devices have a wide range of standards, depending on the device. Given that the design of Web-based materials requires a high level of specialized interface design skill, it is preferable to seek specialist help, especially if you want to use software or media that are not standard, institutionally supported tools. This is particularly important when thinking of using new mobile apps, for instance;
  • third, we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices. Changes in basic computer interface design could have as profound an impact on the use of technology in teaching as the Internet has.

Reliability

The reliability and robustness of the technology is also critical. Most of us will have had the frustration of losing work when our word programming software crashes or working ‘in the cloud’ and being logged off in the middle of a piece of writing. The last thing you want as a teacher or instructor is lots of calls from students saying they cannot get online access, or that their computer keeps crashing (if the software locks up one machine, it will probably lock up all the others!). Technical support can be a huge cost, not just in paying technical staff to deal with service calls, but also in lost time of students and teachers.

This means that you do not want to be at the ‘bleeding’ edge in your choice of technology, if it is to be used in any significant and regular form of teaching. It is best to wait for at least a year for new apps or software to be fully tested before adopting them. It is wise then not to rush in and buy the latest software up-date or new product – wait for the bugs to be ironed out.  Also if you plan to use a new app or technology that is not generally supported by the institution, check first with IT services to ensure there are not security, privacy or institutional bandwidth issues.

A feature of online learning is that peak use tends to fall outside normal office hours. Thus it is really important that your course materials sit on a reliable server with high-speed access and 24 hour, seven days a week reliability, with automatic back-up on a separate, independent server located in a different building. Ideally, the servers should be in a secure area (with for instance emergency electricity supply) with 24 hour technical support, which probably means locating your servers with central IT services. Increasingly online learning materials and courses are being located ‘in the cloud’, which means it is all the more important to ensure that materials are safely and independently backed up.

However, the good news is that most commercial educational software products such as learning management systems and lecture capture, as well as servers, are very reliable. Open source software too is usually reliable but probably slightly more at risk of technical failure or security breaches. If you have good IT support, you should receive very few calls from students on technical matters. The main technical issue that faculty face these days appears to be software up-grades to learning management systems. This often means moving course materials from one version of the software to the new version. This can be costly and time-consuming, particularly if the new version is substantially different from the previous version. Overall, though, reliability should not be an issue.

In summary, ease of use requires professionally designed commercial or open source course software, specialized help in graphics, navigation and screen design for your course materials, and strong technical support for server and software management and maintenance. Certainly in North America, most institutions now provide IT and other services focused specifically on supporting technology-based teaching. However, without such professional support, a great deal of your time as a teacher will be spent on technical issues, and to be blunt, if you do not have easy and convenient access to such support, you would be wise not to get heavily committed to technology-based teaching until that support is available.

Questions for consideration

Some of the questions then that you need to consider are:

  1. How intuitively easy to use is the technology you are considering, both by students and by yourself?
  1. How reliable is the technology?
  1. How easy is it to maintain and up-grade the technology?
  1. The company that is providing the critical hardware or software you are using: is it a stable company that is not likely to go out of business in the next year or two, or is it a new start-up? What strategies are in place to secure any digital teaching materials you create should the organisation providing the software or service cease to exist?
  1. Do you have adequate technical and professional support, both in terms of the technology and with respect to the design of materials?

Feedback

  1. I guess my main concern with this section is whether it is still needed these days. Most institutions, at least in Canadian post-secondary education, have moved in recent years to make sure there is professional IT support for technology for teaching as well as for communications and administration. Much of the newer technologies, such as apps, use relatively simple programming and hence tend to be much more reliable. Some advances have been made in interface design. Faculty themselves have become more tech savvy and learners of course have grown up using digital technologies. Does this all make ‘Ease of Use’ as a criterion redundant now? If not, is this section far too cautious? Should I be encouraging faculty to take more risks?
  2. Is the criterion that ‘novice’ students (i.e. students who have never used the software before) should be studying within 20 minutes of logging on a valid and useful criterion when selecting a platform for teaching and learning?
  3. I actually wrote ‘we can expect in the next few years some significant changes in the general computer interface with the development of speech recognition technology, adaptive responses based on artificial intelligence, and the use of haptics (e.g. hand-movement) to control devices‘ in 2003 (Bates and Poole, 2003). Here we are 11 years later. Will things still be the same in another 11 years time – or will real progress be made in the next few years in interface design? Is Siri the future?
  4. you do not want to be at the ‘bleeding’ edge in your choice of technology’. Do you agree?
  5. Any other comments? In particular do you have examples of good practice that could strengthen this section that I could use?

Up next

Cost as a criterion for media selection. This one will be fun.

My five wishes for online learning in 2015

Listen with webReader
Image: © greatinternational students.blogspot.com, 2013

Image: © greatinternational students.blogspot.com, 2013

Predictions, schmedictions. No-one can guess the future but we can at least say what we would like to see. So here are my five wishes for 2015, with a guess at the odds of them happening.

1. Open textbooks.

My wish: faculty will start adopting open textbooks on a large scale in 2015. This is probably the easiest and best way to bring down the cost of education for students.

BC’s open textbook project should be in full swing in 2015, with the top 40 subject topics/disciplines covered with at least one text book per topic by the end of 2015. These topics cover both university and college programs, including apprenticeship and trades training (got to get those pipe fitters and welders  for LNG). All these books will have been peer reviewed by BC faculty.

These open textbooks will of course be available not only to BC institutions but any institution in the world that wants to use them. It will be fascinating to see who actually adopts these books. We could have the ridiculous situation where everyone else BUT BC universities and colleges are using them.

I have to declare an interest here, though. My own open textbook for faculty, teachers and instructors, Teaching in a Digital Age, will also be available. Already I know of at least three institutions already using it as a set book for courses, and it’s only two-thirds finished.

So my prediction:

  • the chance of  every one of the BC open textbooks being used in at least one institution world wide by the end of 2015: 99%
  • the chance of every BC public post-secondary institution using at least one of the open textbooks by 2015: 5%
  • I’ll be happy with at least 50% of Canadian post-secondary institutions using at least one open textbook in 2015. Open textbooks will then start to take off.

2. Open educational resources

My wish: faculty in each province or state will develop agreed province wide curricula for OERs. This may seem an odd wish, but what I see happening, at least in some Canadian provinces, is a huge amount of duplication of OER production, and on the other hand, very little cross-institutional adoption.

Let’s take an example: statistics. This is a subject often taught badly (sorry, where students often have difficulties) that crosses many subject disciplines: math, physics, psychology, sociology, biology, epidemiology, engineering, etc. So what are some institutions doing: developing core modules that can be shared within the institution across departments. So far, so good. But then it stops there.

Now at least in BC we have subject articulation committees that do a good job working out transfer agreements etc. Why not set up articulation committees for OERs? Instead of investing in new OERs in each institution, why not pool resources and either find existing or develop really good new OERs that combined would make up a sensible curriculum in statistics that can be shared by institutions across the system? Get people from stats departments in all the partnering institutions to work on it so they are more likely then to use the OERs themselves. (No, it doesn’t have to be every institution – just those that can work together.) No new money is needed for this as the money would have been spent anyway in developing online materials or courses.

The chances of this happening:

  • in at least one province: 50%

3. A brand new Canadian digital college

My wish: a new ‘green-field’, designed and built from scratch, institution that is conceived around the idea of digitally-based education designed to meet the learning needs of a digital age.

It’s been a long time since we’ve had a really new type of post-secondary institution in Canada: Tech University of BC (died in 2003); Ryerson University (2001); UOIT (2002); Royal Roads University (1995) Any suggestions for the last one?

A lot has happened in the last 20 years. Do we need such fixed battleships as campus-based institutions when what is really needed are fast destroyers? If you can swallow the premise that at least half of all studying within the next five years will be done online, even at the most traditional campus-based institution, what would a new college built around the idea of digital education look like? Emily Carr University of Art and Design should certainly be thinking about this as it moves to new premises in Vancouver in 2017. However, it is focusing on raising huge amounts of money for – yes, a new campus.

Now what if the government said: we will increase your annual operating budget by say 5-10 per cent if you can reduce the capital budget (once off) by 50 per cent? (Some creative accountancy needed here, of course, but hey, this is Canada). Or what if we took a green field site and looked for proposals based on that formula? What would learning spaces look like on such a campus? What would the learning look like? Where and how would students study? What kind of instructors or teachers would be needed? What kind of programs and delivery methods will make sense in 30 to 50 years time? It’s about time we created institutions that will be fit for the 22nd century and they need to be designed from scratch, using what we know today about media, technology and learning.

The chances of this happening (the commitment) in 2015:

  • in Alberta; 30%
  • in BC: 20%
  • in Ontario: 5%

4. A national research and development centre on digital education

My wish: a national research and development centre on digital education

In Canada, the Federal government has no jurisdiction over education: that is a provincial responsibility (and thank goodness for that – we get more innovation and diversity in a decentralised system)). However the Federal government does have responsibility for research and development. Now if you think, like I do, that Canada overall doesn’t do a bad job in developing and applying innovative approaches to teaching and learning (cMOOCs, anyone?), and that the future lies in effective digitally-based learning, it might be a strategic priority to ensure that Canada remains/becomes a world leader in this area.

At the moment though, there is hardly any sustainable research or development centre in online or digital education in this country (with all due respect to CIDER, which does a fantastic job with almost no resources – see what I mean?) Now you can build a hockey arena for $20 million and still  not get an NHL team, so why not put $100 million over five years into a world class research and development centre equivalent to say the Triumf project (particle physics) which got $222 million over five years in 2014.

This would have to be done right, though. No micro-managing from Ottawa, please. Write good terms of reference, hire good people, throw the money over the wall, and review the program after four years. Locate it preferably where innovation is happening (Atlantic Canada – Memorial University would be good – or the West – anywhere west of Kenora).

Here’s what I would like to see in its terms of reference:

  • develop, in conjunction with Stats Canada, an annual national survey of online and other forms of digital learning in post-secondary (and possibly k-12) education, similar to the Babson survey or even better the US Dept of Education IPEDs report
  • set up a joint advisory or governing board that includes representatives from related Canadian industry (e.g. Desire2Learn, Hootesuite), as well experts in online and digital education
  • spend as much on development as on basic research (most of which would be contracted out, following a research and development agenda developed through national, online consultation);
  • set some clear ‘deliverables’, such as regular reliable data and information on new innovations in Canadian digital education, new software or apps that become self-sustainable, testing and guidelines for faculty on emerging technologies, and above all successful, tested and evaluated design models for digital education
  • use the UK JISC as a model in terms of organisation (minimal central organization, networked and outsourced R&D).
  • hire me as Director (no, just kidding – I’m retired – really).

The chances of this happening in 2015:

  • with me as Director: 0.001%
  • without me as Director: 0.002%

5. Online International Students Canada (MOOCs for credit)

My wish: An online university preparation program for international students. This is a very simple idea. Offer free online programs for high school students anywhere in the world. The students with the best grades in the online program get automatic admission to a Canadian university and grants from the Canadian government to come to Canada and study, with half the time in Canada and the rest studying online from their home country. Target: 20,000 students a year. Total cost: $100 million a year (roughly).

There are literally millions of students who would probably qualify for a Canadian university, given the chance, but can’t afford either the education needed to reach the qualifications or the cost of coming to Canada. This program would offer online courses for the equivalent of the last year of high school in Canada, to enable international students to get the grades needed for entry to a Canadian university. The online courses would be offered free, but students would pay a small fee to take the online examinations, most of which would be computer graded.

The main costs in the program would be administrative (marketing, building a web site, finding existing online high school courses, and setting up the examination system), plus the real costs of travel for successful students and living and tuition costs while in Canada.

The advantages of the plan:

  • opens access to at least some low income or poor people in developing country who have access to some form of Internet access
  • simple to administer (the most difficult part will be getting Canadian universities to participate, even though there will be no direct cost)
  • real costs are lowered by students living at least half the time in their own country
  • students are more likely to remain in their home country after graduation and help build their own nation
  • Canadian universities would get some of the best students from developing countries at no or little direct cost
  • possibilities of stronger trading relations with emerging economies as a result.

The program would be funded by Foreign Affairs Canada (the former CIDA branch) and managed by the AUCC.

The chances of this happening in 2015:

  • 10% (well, it is an election year).

And your wishes for 2015?

Let me know what you would like to see in online learning in 2015 – and whether my ideas are as dumb as they look at first glance.

Students as a criterion for media selection in online learning

Listen with webReader
The Malaysian Ministry of Education announced that it will enable students to bring handphones to schools under strict guidelines Image: © NewStraightsTimes, 2015

The Malaysian Ministry of Education announced in 2012 that it will enable students to bring handphones to schools under strict guidelines
Image: © NewStraightsTimes, 2012

Decisions are being made every day by government, institutions, teachers and students about technology use in education. How are these decisions made? What criteria are used?

In my open textbook, Teaching in a Digital Age, I am suggesting using the SECTIONS model for media selection based on an examination of the following criteria:

  • tudents
  • E ase of use
  • osts
  • eaching functions
  • I nteraction
  • rganisational issues and Open-ness
  • etworking and Novelty
  • peed and Security.

Here is my first draft on questions about students and their needs:

At least three issues related to students need to be considered when choosing media and technology:

  • student demographics;
  • access; and
  • differences in how students learn.

Student demographics

One of the fundamental changes resulting from mass higher education is that university and college teachers must now teach an increasingly diverse range of students. This increasing diversity of students presents major challenges for post-secondary teachers. It requires that courses should be developed with a wide variety of approaches and ways to learn if all students in the course are to be taught well.

In particular, it is important to be clear about the needs of the target group. First and second year students straight from high school are likely to require more support and help studying at a university or college level. They are likely to be less independent as learners, and therefore it may be dangerous to expect them to be able to study entirely through the use of technology. However, technology may be useful as a support for classroom teaching, especially if it provides an alternative approach to learning from the face-to-face teaching, and is gradually introduced, to prepare them for more independent study later in a program.

On the other hand, for students who have already been through higher education as a campus student, but are now in the workforce, a program delivered entirely by technology at a distance is likely to be attractive. Such students will have already developed successful study skills, will have their own community and family life, and will welcome the flexibility of studying this way.

Third and fourth year undergraduate students may appreciate a mix of classroom-based and online study or even one or two fully online courses, especially if some of their face-to-face classes are closed to further enrolments, or if students are working part-time to help cover some of the costs of being at college.

Lastly, within any single class or group of learners, there will be a wide range of differences in prior knowledge, language skills, and preferred study styles. The intelligent use of media and technology can help accommodate these differences. This will be discussed further below (Section 9.2.3).

Access

Of all the criteria in determining choice of technology, this is perhaps the most discriminating. No matter how powerful in educational terms a particular medium or technology may be, if students cannot access it in a convenient and affordable manner they cannot learn from it. Thus you may believe that video streaming is the best way to get your great lectures to students off campus, but if they do not have Internet access at home, or if it takes four hours to download, then forget it. (This is a particular weakness in the argument for using xMOOCs in developing countries. Even if potential learners have Internet or mobile phone access, which 5 billion still don’t, it often costs a day’s wages to download a single YouTube video – see Marron, Missen and Greenberg, 2014).

If you are intending to use computers, tablets or mobile phones for students, then you need answers to a number of questions.

  • What is your or your department’s policy with regard to students’ access to a computer, tablets or mobile phones?
  • Can they use any device or is there a limited list of devices that the institution will support?
  • Is the medium or software you are using compatible with all makes of mobile phones?
  • Is the network adequate to support any extra students your class might add?
  • Who else in the institution needs to know that you are requiring students to use particular devices?

If students are expected to provide their own devices (which increasingly makes sense),

  • what kind of device do they need: one at home with Internet access or a portable that they can bring on to campus – or one that can be used both at home and on campus?
  • What kind of applications will they need to run on their device(s) for study purposes?
  • Will they be able to use the same device(s) across all courses, or will they need different software/apps and devices for different courses?
  • What software skills will students need?
  • Will they need to know how to use a particular software before taking a course, or will they be taught this during the course?

Students (as well as the instructor) need to know the answers to these questions before they enrol in a course or program. In order to answer these questions, you and your department must know what students will use their devices for. There is no point in requiring students to go to the expense of purchasing a laptop computer if the work they are required to do on it is optional or trivial. This means some advance planning on your part.

  • What are the educational advantages that you see in student use of a particular device?
  • What will students need to do on the device in your course?
  • Is it really essential for them to use a device in these ways, or could they easily manage without the device?
  • What technology skills will they need, and will most students have these skills?
  • If students do not have the skills, would it still be worth their learning them, and will there be time set aside in the course for them to learn these skills?

It will really help if your institution has good policies in place for student technology access (see Section 9.7 below). If the institution doesn’t have clear policies or infrastructure for supporting the technologies you want to use, then your job is going to be a lot harder.

The answer to the question of access and the choice of technology will also depend somewhat on the mandate of the institution and your personal educational goals. For instance, highly selective universities can require students to use particular devices, and can help the relatively few students who have financial difficulties in purchasing and using specified devices. If though the mandate of the institution is to reach learners denied access to conventional institutions, equity groups, the unemployed, the working poor, or workers needing up-grading or more advanced education and training, then it becomes critical to find out what technology they have access to or are willing to use.

For instance, the McGill University Health Centre in Montreal conducted a study on how best to improve the communication of health information and education for ‘hard to reach’ patients. These were defined as patients or clients with low levels of literacy, those who face language and cultural barriers, and those who have difficulties processing information because of physical or cognitive disabilities. The study found that most of these patients do not, and do not want to, use computers, even though many Canadian hospitals and health care centers are increasingly relying on computer-mediated information systems for patients (Centre for Literacy, 2001). If an institution’s policy is open access to anyone who wants to take its courses, the availability of equipment already in the home (usually purchased for entertainment purposes) becomes of paramount importance.

If students do not already have personal access to specific technologies, alternatives are to provide the necessary equipment on campus, or through access at local community centres or the workplace. However, the use of local centres may limit another important factor with regard to access, and that is flexibility. If students have to travel to a local centre, or if the centre is open only at certain times, then this will reduce flexibility and increase the barriers to learning. Also, costs can escalate rapidly if the institution has to provide hardware and software for students.

Another important factor to consider is access for student with disabilities. This may mean providing textual or audio options for deaf and visually impaired students respectively. Fortunately there are now well established practices and standards under the general heading of Universal Design standards. Universal Design is defined as follows:

Universal Design for Learning, or UDL, refers to the deliberate design of instruction to meet the needs of a diverse mix of learners. Universally designed courses attempt to meet all learners’ needs by incorporating multiple means of imparting information and flexible methods of assessing learning. UDL also includes multiple means of engaging or tapping into learners’ interests. Universally designed courses are not designed with any one particular group of students with a disability in mind, but rather are designed to address the learning needs of a wide-ranging group.

Brokop, F. (2008)

Most institutions with a centre for supporting teaching and learning will be able to provide assistance to faculty to ensure the course meets universal design standards.  A good guide is available here.

Student differences with respect to learning with technologies

It may seem obvious that different students will have different preferences for different kinds of technology or media. The design of teaching would cater for these differences. Thus if students are ‘visual’ learners, they would be provided with diagrams and illustrations. If they are auditory learners, they will prefer lectures and podcasts. It might appear then that identifying dominant learning styles should then provide strong criteria for media and technology selection. However, it is not as simple as that.

McLoughlin (1999), in a thoughtful review of the implications of the research literature on learning styles for the design of instructional material, concluded that instruction could be designed to accommodate differences in both cognitive-perceptual learning styles and Kolb’s (1984) experiential learning cycle. In a study of new intakes conducted over several years at the University of Missouri-Columbia, using the Myers-Briggs inventory, Schroeder (1993) found that new students think concretely, and are uncomfortable with abstract ideas and ambiguity.

However, a major function of a university education is to develop skills of abstract thinking, and to help students deal with complexity and uncertainty. Perry (1984) found that learning in higher education is a developmental process. It is not surprising then that many students enter college or university without such ‘academic’ skills. Indeed, there are major problems in trying to apply learning styles and other methods of classifying learner differences to media and technology selection and use. Laurillard (2001) makes the point that looking at learning styles in the abstract is not helpful. Learning has to be looked at in context. Thinking skills in one subject area do not necessarily transfer well to another subject area. There are ways of thinking that are specific to different subject areas. Thus logical-rational thinkers in science do not necessarily make thoughtful husbands, or good literary critics.

Part of a university education is to understand and possibly challenge predominant modes of thinking in a subject area. While learner-centered teaching is important, students need to understand the inherent logic, standards, and values of a subject area. They also need to be challenged, and encouraged to think outside the box. This may clash with their preferred learning style. Indeed, the research on the effectiveness of matching instructional method to learning styles is at best equivocal. For instance, Dziuban et al. (2000), at the University of Central Florida, applied Long’s reactive behavior analysis of learning styles to students in both face-to-face classes and Web-based online classes. They found that learning style does not appear to be a predictor of who withdraws from online courses, nor were independent learners likely to do better online than other kinds of learners.

The limitations of learning styles as a guide to designing courses does not mean we should ignore student differences, and we should certainly start from where the student is. In particular, at a university level we need strategies to gradually move students from concrete learning based on personal experience to abstract, reflective learning that can then be applied to new contexts and situations. We shall see in Section 9.5 that technology can be particularly helpful for that.

Thus when designing courses, it is important to offer a range of options for student learning within the same course. One way to do this is to make sure that a course is well structured, with relevant ‘core’ information easily available to all students, but also to make sure that there are opportunities for students to seek out new or different content. This content should be available in a variety of media such as text, diagrams, and video, with concrete examples explicitly related to underlying principles. We shall see in Chapter 10 that the increasing availability of open educational resources makes the provision of this ‘richness’ of possible content much more viable.

Similarly, technology enables a range of learner activities to be made available, such as researching readings on the Web, online discussion forums, synchronous presentations, assessment through e-portfolios, and online group work. The range of activities increases the likelihood that a variety of learner preferences are being met, and also encourages learners to involve themselves in activities and approaches to learning where they may initially feel less comfortable. Such approaches to design are more likely to be effective than courses in multiple versions developed to meet different learning styles. In any case developing multiple versions of courses for different styles of learner is likely to be impractical in most cases. So avoid trying to match different media to different learning styles but instead ensure that students have a wide range of media (text, audio, video, computing) within a course or program.

Lastly, one should be careful in the assumptions made about student preferences for learning through digital technologies. On the one hand, technology ‘boosters’ such as Mark Prensky and Don Tapscott argue that today’s ‘digital natives’ are different from previous generations of students. They argue that todays students live within a networked digital universe and therefore expect their learning also to be all digitally networked. It is also true that professors in particular tend to underestimate students’ access to advanced technologies (professors are often late adopters of new technology), so you should always try to find up-to-date information on what devices and technologies students are currently using, if you can.

On the other hand, it is also dangerous to assume that all students are highly ‘digital literate’ and are demanding that new technologies should be used in teaching. Jones and Shao (2011) conducted a thorough review of the literature on ‘digital natives’, with over 200 appropriate references, including surveys of relevant publications from countries in Europe, Asia, North America, Australia and South Africa. They concluded that:

  • students vary widely in their use and knowledge of digital media
  • the gap between students and their teachers in terms of digital literacy is not fixed, nor is the gulf so large that it cannot be bridged
  • there is little evidence that students enter university with demands for new technologies that teachers and universities cannot meet;
  • students will respond positively to changes in teaching and learning strategies that include the use of new technologies that are well conceived, well explained and properly embedded in courses and degree programmes. However there is no evidence of a pent-up demand amongst students for changes in pedagogy or of a demand for greater collaboration;
  • the development of university infrastructure, technology policies and teaching objectives should be choices about the kinds of provision that the university wishes to make and not a response to general statements about what a new generation of students are demanding;
  • the evidence indicates that young students do not form a generational cohort and they do not express consistent or generationally organised demands.

Graduating students that have been interviewed about learning technologies at the University of British Columbia made it clear that they will be happy to use technology for learning so long as it contributes to their success (in the words of one student, ‘if it will get me better grades’) but the students also made it clear that it was the instructor’s responsibility to decide what technology was best for their studies.

It is also important to pay attention to what Jones and Shao are not saying. They are not saying that social media, personal learning environments, or collaborative learning are inappropriate, nor that the needs of students and the workforce are unchanging or unimportant, but the use of these tools or approaches should be driven by a holistic look at the needs of all students, the needs of the subject area, and the learning goals relevant to a digital age, and not by an erroneous view of what a particular generation of students are demanding.

In summary, one great advantage of the intelligent application of technology to teaching is that it provides opportunities for students to learn in a variety of ways, thus adapting the teaching more easily to student differences. Thus, the first step in media selection is to know your students, their similarities and differences, what technologies they already have access to, and what digital skills they already possess or lack that may be relevant for your courses. This is likely to require the use of a wide range of media within the teaching.

References

Brokop, F. (2008) Accessibility to E-Learning for Persons With Disabilities: Strategies, Guidelines, and Standards Edmonton AB: NorQuest College/eCampus Alberta

Centre for Literacy of Québec (2001) Needs assessment of the health education and information needs of hard-to-reach patients Montréal: Centre for Literacy of Québec

Dziuban, C. et al. (2000) Reactive behavior patterns go online  The Journal of Staff, Program and Organizational Development, Vol. 17, No.3

Jones, C. and Shao, B. (2011) The Net Generation and Digital Natives: Implications for Higher Education Milton Keynes: Open University/Higher Education Academy

Kolb. D. (1984) Experiential Learning: Experience as the source of learning and development Englewood Cliffs NJ: Prentice Hall

Laurillard, D. (2001) Rethinking University Teaching: A Conversational Framework for the Effective Use of Learning Technologies New York/London: Routledge

Marron, D. Missen, C. and Greenberg, J. (2014) “Lo-Fi to Hi-Fi”: A New Way of Conceptualizing Metadata in Underserved Areas with the eGranary Digital Library Austin TX: International Conference on Dublin Core and Metadata Applications

McCoughlin, C. (1999) The implictions of the research literature on learning styles for the design of instructional material Australian Journal of Educational Technology, Vol. 15, No. 3

Perry, W. (1970) Forms of intellectual development and ethical development in the college years: a scheme New York: Holt, Rinehart and Winston

Prensky, M. (2001) ‘Digital natives, Digital Immigrants’ On the Horizon Vol. 9, No. 5

Schroeder, C. (1993) New students – new learning styles, Change, Sept.-Oct

Feedback

As always, feedback will be much appreciated. In particular:

  1. It seems obvious that students should be the first consideration in any educational decision. However, apart from student access to technology, student differences do not seem to me to be a very strong determinant of media choice, because there is so much variability in their needs. Do you agree?
  2. Linked to this, where do you stand on learning styles and media selection? You see I have been cautious about this and have fallen back on a general statement of ensuring a wide mix of media within a course. What are your views on this?
  3. One of the great benefits of the Internet is that it enables/includes nearly all media (text, audio, video, computing) – so do we really need a decision model? If we do, why?
  4. Any other comments, suggestions about appropriate graphics or video to illustrate this section, or examples of how you make decisions about choice of media, will be welcomed.

Next

Ease of use and costs as criteria.

Interactivity and the choice of media

Listen with webReader

Online student 2 I hope you had a good holiday break. This post from my draft for my open textbook, ‘Teaching in a Digital Age,’ looks at another characteristic of media and technologies, the way they handle interactivity.

I have struggled quite a lot with this section, partly because interactivity is a very large topic at the heart of quality learning, but also because although media and technologies do differ in how they handle interaction, there are no clear winners or losers in the sense of providing ‘better’ or ‘worse’ interactivity. So as I write in this section, the aim here is more to sensitise readers to the differences between media and technologies on this dimension, while emphasising that the design of activities is more important than the actual medium used.

Let me know if this section makes sense to you.

There is now an overwhelming amount of research evidence to suggest that students learn best when they are ‘active’ in their learning. But what does this mean? And what role can or do new technologies play in supporting active learning?

8.6.1. Types of learner interaction

There are three different ways learners can interact when studying, and each of these ways requires a somewhat different mix of media and technology

8.6.1.1 Interaction with learning materials

This is the interaction generated when students work on a particular medium, such as a printed textbook, a learning management system, or a short video clip, without direct intervention from an instructor or other students. This interaction can be ‘reflective’, without any overt actions, or it can be ‘observable’, in the form of an assessed response, such as a multiple choice test, or as a contribution to a discussion, or as notes to assist memory and comprehension.

Computer technology can greatly facilitate learners’ interaction with learning resources. Self-administered online tests can provide feedback to students on their comprehension or coverage of a subject area. Such tests can also provide feedback to teachers on topic areas where students are having difficulty, and can also be used for grading of students on their comprehension. Using standard test software built into learning management systems, students can be automatically assessed and graded on their comprehension of course materials. More advanced activities might include composing music using software that converts musical notation to audio, entering data to test concepts through online simulations, or participating in games or decision-making scenarios controlled by the computer. Thus computer-managed learner interaction is particularly good for developing comprehension and understanding of concepts and procedures, but it has limitations in developing the higher order learning skills of analysis, synthesis and critical thinking, without additional human intervention of some kind.

There are other ways besides computer-managed learning to facilitate interaction between learners and learning material. Textbooks may include activities set by the author (as in this textbook), or instructors can set student activities around set readings. Other student activities might include reading text or watching videos embedded in a learning management system, conducting a structured approach to finding and analyzing web-based materials, or downloading and editing information from the web to create their own e-portfolios of work. These activities may or may not be assessed, although evidence suggests that students, and in particular students studying online, tend to focus more an assessed activities.

In other words, with good design and adequate resources, technology-based instruction can provide high levels of student interaction with the learning materials. There are strong economic advantages in exploiting the possibilities of learners’ interaction with learning materials, because intense student-interaction with learning resources increases the time students spend on learning, which tends to lead to increased learning (see Means et al., 2010). Perhaps more importantly, such activity, when well designed, can reduce the time the teacher needs to spend on interacting with each student.

8.6.1.2 Interaction between students and teacher

Student-teacher interaction is often needed though in order to develop many of the higher order learning outcomes, such as analysis, synthesis, and critical thinking. This is particularly important for developing academic learning, where students are challenged to question ideas, and to acquire deep understanding. This often requires dialogue and conversation, either one-on-one between instructor and students, or between an instructor and a group of students. The role of the teacher in for instance either face-to-face seminars or online collaborative learning is therefore critical. Some technologies, such as online discussion forums, enable or encourage such dialogue or discourse between students and instructors. The main limitation of student-teacher interaction is that it can be time-demanding for the teacher, and therefore does not scale easily.

8.6.1.3 Student – student interaction

High quality student-student interaction can be provided equally well both in face-to-face and online learning contexts. Asynchronous online discussion forums built into learning management systems can enable this kind of interaction. Connectivist MOOCs and communities of practice also enable student-student interaction.

Again though quality depends on good design. Merely putting students together in a group, whether online or face-to-face, is not likely to lead to either high levels of participation or high quality learning without careful thought being given to the educational goals of discussion within a course, the topics for discussion and their relationship to assessment and learning outcomes, and without strong support and scaffolding from the instructor (see Chapter 6, Section 4, for more on this.) 

In a technologically rich learning environment, then, a key decision for a teacher or course designer is choosing the best mix of these three different kinds of interaction, taking into consideration the epistemological approach, the amount of time available for both students and instructor, and the desired learning outcomes. Technology can enable all three kinds of interaction.

8.6.2 The interactive characteristics of media and technologies

Different technologies can enhance or inhibit each of these types of interactivity. This again means looking at the dimension of interactivity as it applies to different media and technology. This dimension has three components or points on the dimension in terms of the extent an active response from a user is required when a medium or technology is used for teaching.

8.6.2.1 Inherent interactivity

Some media or technologies are inherently ‘active’ in that they ‘push’ learners to respond. An example is adaptive learning, where students cannot progress to the next stage of learning without interacting through a test that ascertains whether they have learned sufficiently to progress to the next stage, or what ‘corrective’ learning they still need to do. Behaviourist computer-based learning is inherently interactive, as it forces learners to respond. It is not surprising that technologies that control how a learner responds are often associated with more behaviourist approaches to teaching and learning.

8.6.2.2 Designed interactivity

Although some media or technologies are not inherently interactive, they can be explicitly designed to encourage interaction with learners. For instance, although a web page is not inherently interactive, it can be designed to be interactive, by adding a comment box or by requiring users to enter information or make choices.  In particular, teachers or instructors can add or suggest activities within a particular medium.A podcast can be designed so that students stop the podcast every few minutes to do an activity based on the content of the podcast. This approach can be can applied just as much to textbooks, where activities can be included, as to web pages.

In many cases, though, a medium or technology will require the intervention of a teacher or instructor to both set activities around the learning materials and to provide appropriate feedback, thus adding to rather than reducing the workload of instructors. Thus where instructors have to intervene either to design activities or to provide feedback, the cost or time demands on the instructor are likely to be greater than if the other two kinds of interaction are used.

8.6.2.3 User-generated interaction

Some media may not have explicit interaction built in, but end users may still voluntarily interact with the medium, either cognitively and/or through some physical response. For instance someone in an art gallery may cognitively or emotionally respond to a particular painting (while others may just glance at it or pass it by). Students may choose to make sketches or drawings from the painting. Learners may respond in similar ways to reading a novel or poem. The creators of the work may in fact deliberately design the work to encourage reflection or analysis, but not in explicit ways, leaving the interpretation of a work to the viewer or reader. (This of course is a constructivist approach to learning.) Media that encourage learners independently to be active without the necessary intervention of a teacher or instructor also have cost advantages, although the quality of the interaction will be more difficult to monitor or assess.

8.6.2.4 Who’s in control?

Thus one dimension of interactivity is control: to what extent is interaction controlled or enabled by the technology, by the creators/instructors, or by the users/learners? It can be seen that this is a complex dimension, once again influenced by epistemological positions, and also by design decisions on the teacher’s part. These categories of interactivity are in no way ‘fixed’, with different levels or types of interaction possible within the same medium or technology. In the end, interaction needs to be linked to desired learning outcomes. What kind of interaction will best lead to a particular type of learning outcome, and what technology or medium best provides this kind of interaction?

8.6.3 Interaction and feedback

Feedback is an important aspect of interaction, and timely and appropriate feedback on learner activities is often essential for effective learning. In particular to what extent is feedback possible within a particular medium? Although for instance a learner may respond actively to a poem in a book, feedback on that interaction is usually not available just from the reading. Some other medium will need to be used to provide that feedback, such as a face-to-face poetry class or an online discussion forum. On the other hand, with computer-based learning, once a student has responded to a multiple-choice question, the computer can mark the question and give almost instant feedback. However, with some technologies such as print, providing appropriate or immediate feedback to learners on their activities may be difficult or impossible. Although ‘model’ or ‘correct’ answers might be provided in a text on another page, quality feedback on activities must be provided by a teacher or instructor when using a printed medium.

Thus media and technologies again differ in their capacity to provide various kinds of feedback. From a teaching perspective, it is important to be clear about what kind of feedback is likely to be most effective, and then the most effective way to provide that feedback. In particular, under what circumstances is it appropriate to automate feedback, and when should feedback be provided by a teacher, instructor or perhaps a teaching assistant?

8.6.4 Analysing the interactive qualities of different media

In Figure 8.9 I have analysed the interactive qualities of different educational media along two different dimensions: different types of student interaction; and characteristics of the medium, in terms of whether interaction is built into the medium, or needs to be added through deliberate design, or whether it is left to the learner to decide how to interact.

Figure 8. Interactivity and media

Figure 8. Interactivity and media

I have allocated a number of different media here according to the type of learner activity they help generate. The actual location though of some of these media will be dependent on design decisions made by the instructor. For instance, a podcast could be accompanied by an activity (designed), or just be a straight broadcast, with the student left to interpret its meaning and purpose in the course (learner-generated).  In some cases, an activity may be triggered by one medium (such as a podcast) but the actual activity and the feedback may take place in another medium (such as through an online assessment).

8.6.5 Summary

Thus it can be seen that media and technology are somewhat slippery when it comes to categorising them in terms of interaction, because instructors and learners often have a choice in how the medium or technology will actually be used, and that will affect how learner interaction and feedback takes place within a single medium or technology. Thus once again the quality of the design of the interactive experiences is as important as the medium of choice for enabling the activity, although an inappropriate choice of technology can reduce the level of activity and/or the quality of the interactions. In reality teachers and learners are likely to use a combination of media and technologies to ensure high quality interactivity. However, using a number of different media is likely to increase cost and workload for both instructors and learners.

Once again, there is no evaluative judgement on my part in terms of which media or characteristics provide the ‘best’ interactivity. The choice of medium should depend on the kind of activities that are judged important by an instructor within the overall context of the teaching. The purpose of this analysis is to sensitize instructors to the differences between educational media in generating or facilitating different types of interactivity, so that they can make informed decisions. In this case, though, there are no clear media or technology ‘winners’ in terms of interactivity. Design decisions are likely to be more important than technology choice. Nevertheless, technology can enable students separated from their instructors still to get quality activities and feedback, and when appropriately used, technology used to support activities can result in more time on task for students.

Feedback

Well, it’s kind of appropriate that I’m asking for feedback here! In particular:

  1. Are the categories of ‘inherent’, ‘designed’, and ‘learner-centered’ (a) valid (b) helpful in thinking about media and interaction?
  2. Are there other characteristics of interaction associated with media and technologies that I’ve missed?
  3. You will have noted that there are almost no references here. What theories or research have I missed?
  4. Any other comments on this section?

Up next

The richness of media, followed by the pedagogical affordances of text, audio, video and computing.