April 25, 2014

MIT, learning technologies, and developing countries: lessons in technology transfer

Listen with webReader


This week I spent three days at the MIT LINC (Learning International Networks Consortium) conference in Boston/Cambridge, Massachusetts, with the theme: ‘Realizing the Dream: Education Becoming Available to All. Will the World take Advantage?’.

Because there is so much information that I would like to share, I am dividing this into two posts. This post will focus mainly on the activities reported from around the world, although many of these projects are related to or supported by MIT faculty and staff volunteers.

My second post, MOOCs, MIT and Magic, will focus on what MIT is doing to support technology-enabled learning, mainly at home.

But first some words about the conference.


The Learning International Networks Consortium (LINC) is an MIT-managed international initiative that began in 2001 and is operated by a growing team of MIT faculty, student and staff volunteers. 

The mission of the LINC project is: With today’s computer and telecommunications technologies, every young person can have a quality education regardless of his or her place of birth or wealth of parents.

LINC was the brain-child of Richard Larson, Professor of Engineering Systems at MIT.

The conference

LINC 2013 was the sixth conference on this theme organized by MIT. It presented a range of topics, technologies and strategies for technology-enabled learning for developing countries, and raised a number of questions about the implementation of learning technologies within developing countries. There were over 300 participants from 49 countries.

The conference was supported by MIT, Universiti Teknologi Malaysia, and Fujitsu, enabling many participants from developing countries to be supported in their travel and accommodation.

I report below just a selection of the many sessions around the theme of technology-supported education in or for developing countries, and I apologize that for space reasons, I can’t give a full report on all the sessions.


The conference started with a session on four perspectives on MOOCs, with four speakers making short 20 minute presentations followed by a Q&A panel with the four speakers fielding questions from the audience. I was one of the speakers in this session, and because the session deserves a whole report on its own, I discuss this in more detail in my second post, MOOCs, MIT and Magic.

Sufficient here to say that Sir John Daniel made a point reinforced by speakers in other sections that open and virtual universities have been delivering mass credit-based open learning in developing countries for many decades before MOOCs arrived.

The state of technology-enabled education around the world

The future direction of virtual universities

John Daniel’s point was picked up in this session, when Presidents/Rectors from Tec de Monterrey’s Virtual University in Mexico, the African Virtual University, and the Virtual University of Pakistan described the activities of their institutions. In each case, these projects are reaching very large numbers of students in their own countries or region (around 100,000 each), but each institution has its own sets of challenges as well, especially in reaching the very poor or disadvantaged. However, each of these institutions seems to have a sustainable funding base which promises well for the future.

Bakary Diallo, Rector, African Virtual University

Reaching poor young men in Latin America

Fernando Reimers, the Director of the International Education Policy Program at Harvard, discussed the challenges that youth face in developing countries, particularly adolescent boys and young men, who are turned off by traditional teaching methods that neither fit their learning styles nor prepare them for the skills and knowledge needed in today’s workforce. He pointed out that less than 1% of the poorest 10% in Brazil have Internet access. (Similarly, in Mexico, less than 5% of socio-economic groups C, D and E currently have Internet access, and these three groups constitute almost two-thirds of the population.)

National educational policies and educational reform

Robin Horn discussed a World Bank project, SABER, which stands for A Systems Approach to Better Educational Results. The World Bank has found that often educational reform initiatives fail to gain traction in many countries because they do not align with existing government policies (or put another way, without changing policies, the reforms will not gain traction.) By looking at countries that have successful educational outcomes, and comparing their policies with the policies in other developing countries, it is hoped to identify barriers to educational reform. One example is telecommunications policies. An over-regulated, government controlled access to bandwidths can lead to high Internet costs due to lack of competition, whereas loose or unregulated government policies allow for competition resulting in both increased access and lower Internet costs (Canadian government: please note). Mike Trucano at the World Bank is identifying policies that appear to facilitate or inhibit the application of learning technologies in developing countries and this will be added to SABER in the near future.

The SABER website is packed full of data and analysis and makes fascinating reading for policy aficionados, and certainly my experience is that in all countries (not just developing countries) government policies do have a major influence on innovation and change in education. However, at the same time, ‘top-down’ strategies for increasing the use of learning technologies rarely work (South Korea may be an example of this – see below). In other words, government policies can foster or inhibit educational reform, but the reforms themselves will often have to come from or be supported by those close to the action, the teachers, parents and other stakeholders who will gain most from the changes.

Reaching the poor through educational TV in Brazil

Lúcia Araújo, the CEO of Canal Futura, an educational television network in Brazil, described the extensive use of ‘open source’ educational television and support materials that are being used by teachers throughout Brazil to support their classroom teaching. The programs are freely accessible through public television stations throughout Brazil, and almost 100% of homes in Brazil have access to television, a reminder that in many countries there are still better alternatives than the Internet to reach out to the poor and disadvantaged.

Online universities in Korea and SE Asia

Okwha Lee from Chungbuk National University in South Korea gave an overview of national educational technology developments in South Korea. In terms of sheer scale of online learning South Korea is one of the world’s leaders, with 21 cyber or online universities alone serving over 100,000 Korean students. The South Korean government plays a heavy hand in financing and managing national educational technology initiatives, through KERIS (the Korean Education and Research Information Service), and some of its centralization of data collection and top-down policies have provoked both hunger strikes and a national teachers’ strikes. South Korea has also invested in the ASEAN cyber university, which will include students from Vietnam, Cambodia, Laos, Mynmar, with plans to extend it later to other ASEAN countries. Initially students will access programs through local e-learning centres.

Using Intranets to lower the cost of online learning in Africa

Cliff Missen, Director of the WiderNet Project and eGranary, gave a fascinating talk based around access to online learning in Africa. The WiderNet Project is a nonprofit organization, based at the University of North Carolina at Chapel Hill, that is dedicated to improving digital communications to all communities and individuals around the world in need of educational resources, knowledge, and training. Cliff Missen’s focus was on the high cost of Internet access for learners in developing countries, pointing out that while mobile phones are widespread in Africa, they operate on very narrow bandwidths. For instance, it costs US$2 to download a typical YouTube video – equivalent to a day’s salary for many Africans. Programs requiring extensive bandwidth, such as video lectures, are therefore prohibitively expensive for most Africans.

The WiderNet solution is the development of local Intranets linked to an extensive local library of open educational resources, the e-Granary project. The eGranary Digital Library — “The Internet in a Box” – is an off-line information store that provides instant access to over 30 million Internet resources to institutions lacking adequate Internet access. Through a process of copying web sites (with permission) and delivering them to partner institutions in developing countries, this digital library delivers instant access to a wide variety of educational resources including video, audio, books, journals, and Web sites. This means setting up local servers and terminals, and even building a small wireless station to cover the surrounding community, but not necessarily linked into the wider Internet. This cuts down substantially on the cost of accessing digital educational resources.

MIT BLOSSOMS: Math and Science Video Lessons for High School Classes

This project has developed over 60 short videos to enrich science and math high school lessons, all freely available to teachers as streaming video and Internet downloads and as DVDs and videotapes. The videos are made in short sections, with stopping points for student and teacher activities built into the videos and supported by the teachers’ guide to each video

What makes this program particularly interesting is that many of the videos have been developed in developing countries, through partnerships between MIT and local schools and teachers, and with local presenters, often from high schools themselves. The videos are of high quality, both in terms of content, which is guaranteed by oversight from MIT professors, and in production quality. There is a strong emphasis in relating science and math to everyday life. For examples see: How Mosquitoes Fly in Rain (made in the USA) and Pythagoras and the Juice Seller (made in Jordan).

As a result, these videos are also being increasingly used by schools in the USA as well as by schools in developing countries. Although some of the programs are made in the native language of the country where they are made, they are also provided with English sub-titles or with also a voice-over version. By developing programs with local teachers, programs can be fully integrated within the national curriculum, and MIT BLOSSOMS team has also shown how each video relates to individual US state curricula.

What MIT is doing in technology-enabled learning

This session focused on MIT’s other activities in technology-enabled learning. I will discuss this in more detail in my second post, MOOCs, MIT and Magic.

Parallel sessions

In addition to the above plenary sessions there were also 72 presentations, each of roughly ten minutes, in parallel sessions. I cannot possibly report on them all, but I will report on two that I found really interesting .

Taylor’s University, a private university in Malaysia, is using the iPad for teaching foundational engineering. The iPads are used to access  iBooks and electronic study materials that have been specially developed by the School of Engineering to support and enhance the students’ learning. Many of the animations and applications were specially developed by final year undergraduate students, working with their professor, Mushtak Al-Atabi. There is a video on YouTube that includes a good demonstration of how the iPad is used.

The second was presented by Ahmed Ibrahim in behalf of a team of researchers from McGill University and the University of British Columbia in Canada. They investgated through interviews “sources of knowledge” for students entering a gateway science course. The found that the most common source of ‘physics’ knowledge for the students is the teacher, followed by the textbook and other sources such as the Internet – what the researchers called testimony. Few students used deduction, induction or experimentation as means to ‘verify’ their knowledge. Thus the students did not feel empowered to be able to generate valid physics knowledge by themselves and  they have to turn to experts for it. In other words students are taught about science, rather than doing science, in high schools. They concluded that instructors need to use instructional methods, and activities that promote deeper learning, more conceptual knowledge construction, and more sophisticated epistemological beliefs. In other words, stay away from information transmission and focus on activities that encourage scientific thinking. Although this is a general finding (and based on a very small sample), it is significant for what I have to say in my next post about MOOCs and teaching science.


This was one of the most interesting conferences I have been to for a long time. It brought together practitioners in using technology-enabled learning, primarily in science, math and engineering, from a wide range of countries. As a result there was a wide range of approaches, from the highly ‘engineering-based’ approach of MIT with a focus on advanced or new technologies such as MOOCs, to practitioners tackling the challenges of lack of access to or the high cost of the Internet in many developing countries.

In particular, Internet access remains a major challenge, even in newly emerging countries with dynamic economies, such as Brazil, Mexico, and India, especially for reaching beyond the relatively wealthy middle classes. Even in economically advanced countries such as Canada, wideband access, needed for video-lecture based MOOCs for instance, is problematic for many disadvantaged groups such as the urban poor or for remote aboriginal reserves.

I was therefore interested to see that non-Internet based technologies such as radio, broadcast television or DVDs are still immensely valuable technologies for reaching the poor and disadvantaged in developing countries, as are Internet-linked local learning centres and/or Intranets.

Lastly, despite nearly 80 years of aid to developing countries, finding technology-enabled solutions to increasing access to education that are long-term and sustainable remains a challenge, especially when the aid is generated and organized from developed countries such as the USA and Canada. Local partnerships, cultural adaptation, use of appropriate, low-cost technologies, teacher education, and institutional and government policy changes are all needed if technology transfer is to work.

However, there is clear evidence from this conference that in many developing or economically emerging countries, there are local individuals and institutions finding local and appropriate ways to use technology to support learning. It will often start in the more affluent schools or in universities, but as the Internet gradually widens its spread, it begins to filter down to lower income groups as well. Indeed, in some areas, such as mobile learning in Africa, there is innovation and development taking place that exceeds anything in the developed world, in terms of originality and spread amongst the poor and disadvantaged.

The MIT group behind LINC has done a great service in providing a means for participants from both developed and developing countries to share experience and knowledge in this area.



  1. An excellent post that highlights the [harsh] realities of using MOOCs to educate the world, which many US-based MOOC platform providers are suggesting. Yes, a noble idea, but not only is technology a challenge in terms of Internet access, bandwidth capabilities, and hardware, the other issue is cultural differences. MOOCs rely on self-directed learning with students that have developed skills in writing and reading, and in the English language no less.

    It is encouraging to read about projects such as Taylor’s University iPad device used for its engineering program and the WiderNet Project and eGranary projects in Africa.

    Thanks for an excellent summary.

  2. Leif Laursen says:

    This is what we need in Tanzania.
    We already have the Open University physical and online university, to help them with the latest technology by transmitting lessons from rich and well known University’s will definitely improve their standards in education.
    I hope that we will see more of this.

  3. Mana Kai says:

    As Debbie mentioned, the challenges of not only providing the technology but also the infrastructure on which to implement them are greater than we can reasonably expect. Insightful article though.


  1. [...] Tony Bate’s post on MIT learning technologies and developing countries lessons in technology transfer [...]

Speak Your Mind